uxplayer/lib/raop_ntp.c
2025-05-03 17:09:23 +08:00

533 lines
18 KiB
C

/*
* Copyright (c) 2019 dsafa22 and 2014 Joakim Plate, modified by Florian Draschbacher,
* All Rights Reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
*=================================================================
* modified by fduncanh 2021-23
*/
// Some of the code in here comes from https://github.com/juhovh/shairplay/pull/25/files
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include <errno.h>
#ifdef _WIN32
#define CAST (char *)
#else
#define CAST
#endif
#include "raop.h"
#include "threads.h"
#include "compat.h"
#include "netutils.h"
#include "byteutils.h"
#include "utils.h"
#define SECOND_IN_NSECS 1000000000UL
#define RAOP_NTP_DATA_COUNT 8
#define RAOP_NTP_PHI_PPM 15ull // PPM
#define RAOP_NTP_R_RHO ((1ull << 32) / 1000u) // packet precision
#define RAOP_NTP_S_RHO ((1ull << 32) / 1000u) // system clock precision
#define RAOP_NTP_MAX_DIST ((1500ull << 32) / 1000u) // maximum allowed distance
#define RAOP_NTP_MAX_DISP ((16ull << 32)) // maximum dispersion
#define RAOP_NTP_CLOCK_BASE (2208988800ull << 32)
typedef struct raop_ntp_data_s {
uint64_t time; // The local wall clock time at time of ntp packet arrival
uint64_t dispersion;
int64_t delay; // The round trip delay
int64_t offset; // The difference between remote and local wall clock time
} raop_ntp_data_t;
struct raop_ntp_s {
logger_t *logger;
raop_callbacks_t callbacks;
int max_ntp_timeouts;
thread_handle_t thread;
mutex_handle_t run_mutex;
mutex_handle_t wait_mutex;
cond_handle_t wait_cond;
raop_ntp_data_t data[RAOP_NTP_DATA_COUNT];
int data_index;
// The clock sync params are periodically updated to the AirPlay client's NTP clock
mutex_handle_t sync_params_mutex;
int64_t sync_offset;
int64_t sync_dispersion;
int64_t sync_delay;
// Socket address of the AirPlay client
struct sockaddr_storage remote_saddr;
socklen_t remote_saddr_len;
// The remote port of the NTP server on the AirPlay client
unsigned short timing_rport;
// The local port of the NTP client on the AirPlay server
unsigned short timing_lport;
/* MUTEX LOCKED VARIABLES START */
/* These variables only edited mutex locked */
int running;
int joined;
// UDP socket
int tsock;
timing_protocol_t time_protocol;
};
/*
* Used for sorting the data array by delay
*/
static int
raop_ntp_compare(const void* av, const void* bv)
{
const raop_ntp_data_t* a = (const raop_ntp_data_t*)av;
const raop_ntp_data_t* b = (const raop_ntp_data_t*)bv;
if (a->delay < b->delay) {
return -1;
} else if(a->delay > b->delay) {
return 1;
} else {
return 0;
}
}
static int
raop_ntp_parse_remote(raop_ntp_t *raop_ntp, const char *remote, int remote_addr_len)
{
int family;
int ret;
assert(raop_ntp);
if (remote_addr_len == 4) {
family = AF_INET;
} else if (remote_addr_len == 16) {
family = AF_INET6;
} else {
return -1;
}
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp parse remote ip = %s", remote);
ret = netutils_parse_address(family, remote,
&raop_ntp->remote_saddr,
sizeof(raop_ntp->remote_saddr));
if (ret < 0) {
return -1;
}
raop_ntp->remote_saddr_len = ret;
return 0;
}
raop_ntp_t *raop_ntp_init(logger_t *logger, raop_callbacks_t *callbacks, const char *remote,
int remote_addr_len, unsigned short timing_rport, timing_protocol_t *time_protocol) {
raop_ntp_t *raop_ntp;
assert(logger);
assert(callbacks);
raop_ntp = calloc(1, sizeof(raop_ntp_t));
if (!raop_ntp) {
return NULL;
}
raop_ntp->time_protocol = *time_protocol;
raop_ntp->logger = logger;
memcpy(&raop_ntp->callbacks, callbacks, sizeof(raop_callbacks_t));
raop_ntp->timing_rport = timing_rport;
if (raop_ntp_parse_remote(raop_ntp, remote, remote_addr_len) < 0) {
free(raop_ntp);
return NULL;
}
// Set port on the remote address struct
((struct sockaddr_in *) &raop_ntp->remote_saddr)->sin_port = htons(timing_rport);
raop_ntp->running = 0;
raop_ntp->joined = 1;
uint64_t time = raop_ntp_get_local_time(raop_ntp);
for (int i = 0; i < RAOP_NTP_DATA_COUNT; ++i) {
raop_ntp->data[i].offset = 0ll;
raop_ntp->data[i].delay = RAOP_NTP_MAX_DISP;
raop_ntp->data[i].dispersion = RAOP_NTP_MAX_DISP;
raop_ntp->data[i].time = time;
}
raop_ntp->sync_delay = 0;
raop_ntp->sync_dispersion = 0;
raop_ntp->sync_offset = 0;
MUTEX_CREATE(raop_ntp->run_mutex);
MUTEX_CREATE(raop_ntp->wait_mutex);
COND_CREATE(raop_ntp->wait_cond);
MUTEX_CREATE(raop_ntp->sync_params_mutex);
return raop_ntp;
}
void
raop_ntp_destroy(raop_ntp_t *raop_ntp)
{
if (raop_ntp) {
raop_ntp_stop(raop_ntp);
MUTEX_DESTROY(raop_ntp->run_mutex);
MUTEX_DESTROY(raop_ntp->wait_mutex);
COND_DESTROY(raop_ntp->wait_cond);
MUTEX_DESTROY(raop_ntp->sync_params_mutex);
free(raop_ntp);
}
}
unsigned short raop_ntp_get_port(raop_ntp_t *raop_ntp) {
return raop_ntp->timing_lport;
}
static int
raop_ntp_init_socket(raop_ntp_t *raop_ntp, int use_ipv6)
{
assert(raop_ntp);
unsigned short tport = raop_ntp->timing_lport;
int tsock = netutils_init_socket(&tport, use_ipv6, 1);
if (tsock == -1) {
goto sockets_cleanup;
}
// We're calling recvfrom without knowing whether there is any data, so we need a timeout
uint32_t recv_timeout_msec = 300;
#ifdef _WIN32
DWORD tv = recv_timeout_msec;
#else
struct timeval tv;
tv.tv_sec = recv_timeout_msec / (uint32_t) 1000;
tv.tv_usec = ((uint32_t) 1000) * (recv_timeout_msec % (uint32_t) 1000);
#endif
if (setsockopt(tsock, SOL_SOCKET, SO_RCVTIMEO, CAST &tv, sizeof(tv)) < 0) {
goto sockets_cleanup;
}
/* Set socket descriptors */
raop_ntp->tsock = tsock;
/* Set port values */
raop_ntp->timing_lport = tport;
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp local timing port socket %d port UDP %d", tsock, tport);
return 0;
sockets_cleanup:
if (tsock != -1) closesocket(tsock);
return -1;
}
static void
raop_ntp_flush_socket(int fd)
{
#ifdef _WIN32
#define IOCTL ioctlsocket
u_long bytes_available = 0;
#else
#define IOCTL ioctl
int bytes_available = 0;
#endif
while (IOCTL(fd, FIONREAD, &bytes_available) == 0 && bytes_available > 0)
{
// We are guaranteed that we won't block, because bytes are available.
// Read 1 byte. Extra bytes in the datagram will be discarded.
char c;
int result = recvfrom(fd, &c, sizeof(c), 0, NULL, NULL);
if (result < 0)
{
break;
}
}
}
static THREAD_RETVAL
raop_ntp_thread(void *arg)
{
raop_ntp_t *raop_ntp = arg;
assert(raop_ntp);
unsigned char response[128];
int response_len;
unsigned char request[32] = {0x80, 0xd2, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
raop_ntp_data_t data_sorted[RAOP_NTP_DATA_COUNT];
const unsigned two_pow_n[RAOP_NTP_DATA_COUNT] = {2, 4, 8, 16, 32, 64, 128, 256};
int timeout_counter = 0;
bool conn_reset = false;
bool logger_debug = (logger_get_level(raop_ntp->logger) >= LOGGER_DEBUG);
while (1) {
MUTEX_LOCK(raop_ntp->run_mutex);
if (!raop_ntp->running) {
MUTEX_UNLOCK(raop_ntp->run_mutex);
break;
}
MUTEX_UNLOCK(raop_ntp->run_mutex);
// Flush the socket in case a super delayed response arrived or something
raop_ntp_flush_socket(raop_ntp->tsock);
// Send request
uint64_t send_time = raop_ntp_get_local_time(raop_ntp);
byteutils_put_ntp_timestamp(request, 24, send_time);
int send_len = sendto(raop_ntp->tsock, (char *)request, sizeof(request), 0,
(struct sockaddr *) &raop_ntp->remote_saddr, raop_ntp->remote_saddr_len);
if (logger_debug) {
char *str = utils_data_to_string(request, sizeof(request), 16);
logger_log(raop_ntp->logger, LOGGER_DEBUG, "\nraop_ntp send time type_t=%d packetlen = %d, now = %8.6f\n%s",
request[1] &~0x80, sizeof(request), (double) send_time / SECOND_IN_NSECS, str);
free(str);
}
if (send_len < 0) {
int sock_err = SOCKET_GET_ERROR();
logger_log(raop_ntp->logger, LOGGER_ERR, "raop_ntp error sending request. Error %d:%s",
sock_err, SOCKET_ERROR_STRING(sock_err));
} else {
// Read response
response_len = recvfrom(raop_ntp->tsock, (char *)response, sizeof(response), 0, NULL, NULL);
if (response_len < 0) {
timeout_counter++;
char time[30];
int level = (timeout_counter == 1 ? LOGGER_DEBUG : LOGGER_ERR);
ntp_timestamp_to_time(send_time, time, sizeof(time));
logger_log(raop_ntp->logger, level, "raop_ntp receive timeout %d (limit %d) (request sent %s)",
timeout_counter, raop_ntp->max_ntp_timeouts, time);
if (timeout_counter == raop_ntp->max_ntp_timeouts) {
conn_reset = true; /* client is no longer responding */
break;
}
} else {
//local time of the server when the NTP response packet returns
int64_t t3 = (int64_t) raop_ntp_get_local_time(raop_ntp);
timeout_counter = 0;
// Local time of the server when the NTP request packet leaves the server
int64_t t0 = (int64_t) byteutils_get_ntp_timestamp(response, 8);
// Local time of the client when the NTP request packet arrives at the client
int64_t t1 = (int64_t) raop_remote_timestamp_to_nano_seconds(raop_ntp, byteutils_get_long_be(response, 16));
// Local time of the client when the response message leaves the client
int64_t t2 = (int64_t) raop_remote_timestamp_to_nano_seconds(raop_ntp, byteutils_get_long_be(response, 24));
if (logger_debug) {
char *str = utils_data_to_string(response, response_len, 16);
logger_log(raop_ntp->logger, LOGGER_DEBUG,
"raop_ntp receive time type_t=%d packetlen = %d, now = %8.6f t1 = %8.6f, t2 = %8.6f\n%s",
response[1] &~0x80, response_len, (double) t3 / SECOND_IN_NSECS, (double) t1 / SECOND_IN_NSECS,
(double) t2 / SECOND_IN_NSECS, str);
free(str);
}
// The iOS client device sends its time in seconds relative to an arbitrary Epoch (the last boot).
// For a little bonus confusion, they add SECONDS_FROM_1900_TO_1970.
// This means we have to expect some rather huge offset, but its growth or shrink over time should be small.
raop_ntp->data_index = (raop_ntp->data_index + 1) % RAOP_NTP_DATA_COUNT;
raop_ntp->data[raop_ntp->data_index].time = t3;
raop_ntp->data[raop_ntp->data_index].offset = ((t1 - t0) + (t2 - t3)) / 2;
raop_ntp->data[raop_ntp->data_index].delay = ((t3 - t0) - (t2 - t1));
raop_ntp->data[raop_ntp->data_index].dispersion = RAOP_NTP_R_RHO + RAOP_NTP_S_RHO + (t3 - t0) * RAOP_NTP_PHI_PPM / SECOND_IN_NSECS;
// Sort by delay
memcpy(data_sorted, raop_ntp->data, sizeof(data_sorted));
qsort(data_sorted, RAOP_NTP_DATA_COUNT, sizeof(data_sorted[0]), raop_ntp_compare);
uint64_t dispersion = 0ull;
int64_t offset = data_sorted[0].offset;
int64_t delay = data_sorted[RAOP_NTP_DATA_COUNT - 1].delay;
// Calculate dispersion
for(int i = 0; i < RAOP_NTP_DATA_COUNT; ++i) {
unsigned long long disp = raop_ntp->data[i].dispersion + (t3 - raop_ntp->data[i].time) * RAOP_NTP_PHI_PPM / SECOND_IN_NSECS;
dispersion += disp / two_pow_n[i];
}
MUTEX_LOCK(raop_ntp->sync_params_mutex);
int64_t correction = offset - raop_ntp->sync_offset;
raop_ntp->sync_offset = offset;
raop_ntp->sync_dispersion = dispersion;
raop_ntp->sync_delay = delay;
MUTEX_UNLOCK(raop_ntp->sync_params_mutex);
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp sync correction = %lld", correction);
}
}
// Sleep for 3 seconds
struct timespec wait_time;
MUTEX_LOCK(raop_ntp->wait_mutex);
clock_gettime(CLOCK_REALTIME, &wait_time);
wait_time.tv_sec += 3;
pthread_cond_timedwait(&raop_ntp->wait_cond, &raop_ntp->wait_mutex, &wait_time);
MUTEX_UNLOCK(raop_ntp->wait_mutex);
}
// Ensure running reflects the actual state
MUTEX_LOCK(raop_ntp->run_mutex);
raop_ntp->running = false;
MUTEX_UNLOCK(raop_ntp->run_mutex);
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp exiting thread");
if (conn_reset && raop_ntp->callbacks.conn_reset) {
const bool video_reset = false; /* leave "frozen video" in place */
raop_ntp->callbacks.conn_reset(raop_ntp->callbacks.cls, timeout_counter, video_reset);
}
return 0;
}
void
raop_ntp_start(raop_ntp_t *raop_ntp, unsigned short *timing_lport, int max_ntp_timeouts)
{
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp starting time");
int use_ipv6 = 0;
assert(raop_ntp);
assert(timing_lport);
raop_ntp->max_ntp_timeouts = max_ntp_timeouts;
raop_ntp->timing_lport = *timing_lport;
MUTEX_LOCK(raop_ntp->run_mutex);
if (raop_ntp->running || !raop_ntp->joined) {
MUTEX_UNLOCK(raop_ntp->run_mutex);
return;
}
/* Initialize ports and sockets */
if (raop_ntp->remote_saddr.ss_family == AF_INET6) {
use_ipv6 = 1;
}
//use_ipv6 = 0;
if (raop_ntp_init_socket(raop_ntp, use_ipv6) < 0) {
logger_log(raop_ntp->logger, LOGGER_ERR, "raop_ntp initializing timing socket failed");
MUTEX_UNLOCK(raop_ntp->run_mutex);
return;
}
*timing_lport = raop_ntp->timing_lport;
/* Create the thread and initialize running values */
raop_ntp->running = 1;
raop_ntp->joined = 0;
THREAD_CREATE(raop_ntp->thread, raop_ntp_thread, raop_ntp);
MUTEX_UNLOCK(raop_ntp->run_mutex);
}
void
raop_ntp_stop(raop_ntp_t *raop_ntp)
{
assert(raop_ntp);
/* Check that we are running and thread is not
* joined (should never be while still running) */
MUTEX_LOCK(raop_ntp->run_mutex);
if (!raop_ntp->running || raop_ntp->joined) {
MUTEX_UNLOCK(raop_ntp->run_mutex);
return;
}
raop_ntp->running = 0;
MUTEX_UNLOCK(raop_ntp->run_mutex);
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp stopping time thread");
MUTEX_LOCK(raop_ntp->wait_mutex);
COND_SIGNAL(raop_ntp->wait_cond);
MUTEX_UNLOCK(raop_ntp->wait_mutex);
if (raop_ntp->tsock != -1) {
closesocket(raop_ntp->tsock);
raop_ntp->tsock = -1;
}
THREAD_JOIN(raop_ntp->thread);
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp stopped time thread");
/* Mark thread as joined */
MUTEX_LOCK(raop_ntp->run_mutex);
raop_ntp->joined = 1;
MUTEX_UNLOCK(raop_ntp->run_mutex);
}
/**
* Converts from a little endian ntp timestamp to nano seconds since the Unix epoch.
* Does the same thing as byteutils_get_ntp_timestamp, except its input is an uint64_t
* and expected to already be in little endian.
* Please note this just converts to a different representation, the clock remains the
* same.
*/
uint64_t raop_ntp_timestamp_to_nano_seconds(uint64_t ntp_timestamp, bool account_for_epoch_diff) {
uint64_t seconds = ((ntp_timestamp >> 32) & 0xffffffff) - (account_for_epoch_diff ? SECONDS_FROM_1900_TO_1970 : 0);
uint64_t fraction = (ntp_timestamp & 0xffffffff);
return (seconds * SECOND_IN_NSECS) + ((fraction * SECOND_IN_NSECS) >> 32);
}
uint64_t raop_remote_timestamp_to_nano_seconds(raop_ntp_t *raop_ntp, uint64_t timestamp) {
uint64_t seconds = ((timestamp >> 32) & 0xffffffff);
if (raop_ntp->time_protocol == NTP) seconds -= SECONDS_FROM_1900_TO_1970;
uint64_t fraction = (timestamp & 0xffffffff);
return (seconds * SECOND_IN_NSECS) + ((fraction * SECOND_IN_NSECS) >> 32);
}
/**
* Returns the current time in nano seconds according to the local wall clock.
* The system Unix time is used as the local wall clock.
*/
uint64_t raop_ntp_get_local_time(raop_ntp_t *raop_ntp) {
struct timespec time;
clock_gettime(CLOCK_REALTIME, &time);
return ((uint64_t) time.tv_nsec) + (uint64_t) time.tv_sec * SECOND_IN_NSECS;
}
/**
* Returns the current time in nano seconds according to the remote wall clock.
*/
uint64_t raop_ntp_get_remote_time(raop_ntp_t *raop_ntp) {
MUTEX_LOCK(raop_ntp->sync_params_mutex);
int64_t offset = raop_ntp->sync_offset;
MUTEX_UNLOCK(raop_ntp->sync_params_mutex);
return (uint64_t) ((int64_t) raop_ntp_get_local_time(raop_ntp) + offset);
}
/**
* Returns the local wall clock time in nano seconds for the given point in remote clock time
*/
uint64_t raop_ntp_convert_remote_time(raop_ntp_t *raop_ntp, uint64_t remote_time) {
MUTEX_LOCK(raop_ntp->sync_params_mutex);
int64_t offset = raop_ntp->sync_offset;
MUTEX_UNLOCK(raop_ntp->sync_params_mutex);
return (uint64_t) ((int64_t) remote_time - offset);
}
/**
* Returns the remote wall clock time in nano seconds for the given point in local clock time
*/
uint64_t raop_ntp_convert_local_time(raop_ntp_t *raop_ntp, uint64_t local_time) {
MUTEX_LOCK(raop_ntp->sync_params_mutex);
int64_t offset = raop_ntp->sync_offset;
MUTEX_UNLOCK(raop_ntp->sync_params_mutex);
return (uint64_t) ((int64_t) local_time + offset);
}