uxplayer/lib/crypto.c

582 lines
15 KiB
C
Raw Normal View History

2025-05-03 16:24:47 +08:00
/**
* RPiPlay - An open-source AirPlay mirroring server for Raspberry Pi
* Copyright (C) 2019 Florian Draschbacher
* Copyright (C) 2020 Jaslo Ziska
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*===================================================================
* modified by fduncanh 2021-2022
*/
#include "crypto.h"
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/pem.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include "utils.h"
#define SALT_PK "UxPlay-Persistent-Not-Secure-Public-Key"
struct aes_ctx_s {
EVP_CIPHER_CTX *cipher_ctx;
uint8_t key[AES_128_BLOCK_SIZE];
uint8_t iv[AES_128_BLOCK_SIZE];
aes_direction_t direction;
uint8_t block_offset;
};
uint8_t waste[AES_128_BLOCK_SIZE];
// Common AES utilities
void handle_error(const char* location) {
long error = ERR_get_error();
const char* error_str = ERR_error_string(error, NULL);
fprintf(stderr, "Crypto error at %s: %s\n", location, error_str);
exit(EXIT_FAILURE);
}
aes_ctx_t *aes_init(const uint8_t *key, const uint8_t *iv, const EVP_CIPHER *type, aes_direction_t direction) {
aes_ctx_t *ctx = malloc(sizeof(aes_ctx_t));
assert(ctx != NULL);
ctx->cipher_ctx = EVP_CIPHER_CTX_new();
assert(ctx->cipher_ctx != NULL);
ctx->block_offset = 0;
ctx->direction = direction;
if (direction == AES_ENCRYPT) {
if (!EVP_EncryptInit_ex(ctx->cipher_ctx, type, NULL, key, iv)) {
handle_error(__func__);
}
} else {
if (!EVP_DecryptInit_ex(ctx->cipher_ctx, type, NULL, key, iv)) {
handle_error(__func__);
}
}
memcpy(ctx->key, key, AES_128_BLOCK_SIZE);
memcpy(ctx->iv, iv, AES_128_BLOCK_SIZE);
EVP_CIPHER_CTX_set_padding(ctx->cipher_ctx, 0);
return ctx;
}
void aes_encrypt(aes_ctx_t *ctx, const uint8_t *in, uint8_t *out, int in_len) {
int out_len_e = 0;
if (!EVP_EncryptUpdate(ctx->cipher_ctx, out, &out_len_e, in, in_len)) {
handle_error(__func__);
}
int out_len_f = in_len - out_len_e;
if (!EVP_EncryptFinal_ex(ctx->cipher_ctx, out + out_len_e, &out_len_f)) {
handle_error(__func__);
}
assert(out_len_e + out_len_f <= in_len);
}
void aes_decrypt(aes_ctx_t *ctx, const uint8_t *in, uint8_t *out, int in_len) {
int out_len_d = 0;
if (!EVP_DecryptUpdate(ctx->cipher_ctx, out, &out_len_d, in, in_len)) {
handle_error(__func__);
}
int out_len_f = in_len - out_len_d;
if (!EVP_DecryptFinal_ex(ctx->cipher_ctx, out + out_len_d, &out_len_f)) {
handle_error(__func__);
}
assert(out_len_f + out_len_d <= in_len);
}
void aes_destroy(aes_ctx_t *ctx) {
if (ctx) {
EVP_CIPHER_CTX_free(ctx->cipher_ctx);
free(ctx);
}
}
void aes_reset(aes_ctx_t *ctx, const EVP_CIPHER *type, aes_direction_t direction) {
uint8_t key[AES_128_BLOCK_SIZE], iv[AES_128_BLOCK_SIZE];
memcpy(key, ctx->key, AES_128_BLOCK_SIZE);
memcpy(iv, ctx->iv, AES_128_BLOCK_SIZE);
if (!EVP_CIPHER_CTX_reset(ctx->cipher_ctx)) {
handle_error(__func__);
}
if (direction == AES_ENCRYPT) {
if (!EVP_EncryptInit_ex(ctx->cipher_ctx, type, NULL, key, iv)) {
handle_error(__func__);
}
} else {
if (!EVP_DecryptInit_ex(ctx->cipher_ctx, type, NULL, key, iv)) {
handle_error(__func__);
}
}
memcpy(ctx->key, key, AES_128_BLOCK_SIZE);
memcpy(ctx->iv, iv, AES_128_BLOCK_SIZE);
EVP_CIPHER_CTX_set_padding(ctx->cipher_ctx, 0);
}
// AES CTR
aes_ctx_t *aes_ctr_init(const uint8_t *key, const uint8_t *iv) {
return aes_init(key, iv, EVP_aes_128_ctr(), AES_ENCRYPT);
}
void aes_ctr_encrypt(aes_ctx_t *ctx, const uint8_t *in, uint8_t *out, int len) {
aes_encrypt(ctx, in, out, len);
ctx->block_offset = (ctx->block_offset + len) % AES_128_BLOCK_SIZE;
}
void aes_ctr_start_fresh_block(aes_ctx_t *ctx) {
// Is there a better way to do this?
if (ctx->block_offset == 0) return;
aes_ctr_encrypt(ctx, waste, waste, AES_128_BLOCK_SIZE - ctx->block_offset);
}
void aes_ctr_decrypt(aes_ctx_t *ctx, const uint8_t *in, uint8_t *out, int len) {
aes_encrypt(ctx, in, out, len);
}
void aes_ctr_reset(aes_ctx_t *ctx) {
aes_reset(ctx, EVP_aes_128_ctr(), AES_ENCRYPT);
}
void aes_ctr_destroy(aes_ctx_t *ctx) {
aes_destroy(ctx);
}
// AES CBC
aes_ctx_t *aes_cbc_init(const uint8_t *key, const uint8_t *iv, aes_direction_t direction) {
return aes_init(key, iv, EVP_aes_128_cbc(), direction);
}
void aes_cbc_encrypt(aes_ctx_t *ctx, const uint8_t *in, uint8_t *out, int len) {
assert(ctx->direction == AES_ENCRYPT);
aes_encrypt(ctx, in, out, len);
}
void aes_cbc_decrypt(aes_ctx_t *ctx, const uint8_t *in, uint8_t *out, int len) {
assert(ctx->direction == AES_DECRYPT);
aes_decrypt(ctx, in, out, len);
}
void aes_cbc_reset(aes_ctx_t *ctx) {
aes_reset(ctx, EVP_aes_128_cbc(), ctx->direction);
}
void aes_cbc_destroy(aes_ctx_t *ctx) {
aes_destroy(ctx);
}
// X25519
struct x25519_key_s {
EVP_PKEY *pkey;
};
x25519_key_t *x25519_key_generate(void) {
x25519_key_t *key;
EVP_PKEY_CTX *pctx;
key = calloc(1, sizeof(x25519_key_t));
assert(key);
pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_X25519, NULL);
if (!pctx) {
handle_error(__func__);
}
if (!EVP_PKEY_keygen_init(pctx)) {
handle_error(__func__);
}
if (!EVP_PKEY_keygen(pctx, &key->pkey)) {
handle_error(__func__);
}
EVP_PKEY_CTX_free(pctx);
return key;
}
x25519_key_t *x25519_key_from_raw(const unsigned char data[X25519_KEY_SIZE]) {
x25519_key_t *key;
key = malloc(sizeof(x25519_key_t));
assert(key);
key->pkey = EVP_PKEY_new_raw_public_key(EVP_PKEY_X25519, NULL, data, X25519_KEY_SIZE);
if (!key->pkey) {
handle_error(__func__);
}
return key;
}
void x25519_key_get_raw(unsigned char data[X25519_KEY_SIZE], const x25519_key_t *key) {
assert(key);
if (!EVP_PKEY_get_raw_public_key(key->pkey, data, &(size_t) {X25519_KEY_SIZE})) {
handle_error(__func__);
}
}
void x25519_key_destroy(x25519_key_t *key) {
if (key) {
EVP_PKEY_free(key->pkey);
free(key);
}
}
void x25519_derive_secret(unsigned char secret[X25519_KEY_SIZE], const x25519_key_t *ours, const x25519_key_t *theirs) {
EVP_PKEY_CTX *pctx;
assert(ours);
assert(theirs);
pctx = EVP_PKEY_CTX_new(ours->pkey, NULL);
if (!pctx) {
handle_error(__func__);
}
if (!EVP_PKEY_derive_init(pctx)) {
handle_error(__func__);
}
if (!EVP_PKEY_derive_set_peer(pctx, theirs->pkey)) {
handle_error(__func__);
}
if (!EVP_PKEY_derive(pctx, secret, &(size_t) {X25519_KEY_SIZE})) {
handle_error(__func__);
}
EVP_PKEY_CTX_free(pctx);
}
// GCM AES 128
int gcm_encrypt(const unsigned char *plaintext, int plaintext_len, unsigned char *ciphertext,
unsigned char *key, unsigned char *iv, unsigned char *tag)
{
EVP_CIPHER_CTX *ctx;
int len;
int ciphertext_len;
if(!(ctx = EVP_CIPHER_CTX_new()))
handle_error(__func__);
if(1 != EVP_EncryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL))
handle_error(__func__);
if(1 != EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, 16, NULL))
handle_error(__func__);
if(1 != EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv))
handle_error(__func__);
if(1 != EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext, plaintext_len))
handle_error(__func__);
ciphertext_len = len;
if(1 != EVP_EncryptFinal_ex(ctx, ciphertext + len, &len))
handle_error(__func__);
ciphertext_len += len;
if(1 != EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag))
handle_error(__func__);
EVP_CIPHER_CTX_free(ctx);
return ciphertext_len;
}
int gcm_decrypt(unsigned char *ciphertext, int ciphertext_len, unsigned char *plaintext,
unsigned char *key, unsigned char *iv, unsigned char *tag)
{
EVP_CIPHER_CTX *ctx;
int len;
int plaintext_len;
int ret;
if(!(ctx = EVP_CIPHER_CTX_new()))
handle_error(__func__);
if(!EVP_DecryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL))
handle_error(__func__);
if(!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, 16, NULL))
handle_error(__func__);
if(!EVP_DecryptInit_ex(ctx, NULL, NULL, key, iv))
handle_error(__func__);
if(!EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len))
handle_error(__func__);
plaintext_len = len;
if(!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag))
handle_error(__func__);
ret = EVP_DecryptFinal_ex(ctx, plaintext + len, &len);
EVP_CIPHER_CTX_free(ctx);
if(ret > 0) {
/* Success */
plaintext_len += len;
return plaintext_len;
} else {
/* Verify failed */
return -1;
}
}
// ED25519
struct ed25519_key_s {
EVP_PKEY *pkey;
};
ed25519_key_t *ed25519_key_generate(const char *device_id, const char *keyfile, int *result) {
ed25519_key_t *key;
EVP_PKEY_CTX *pctx;
BIO *bp;
FILE *file;
bool new_pk = false;
bool use_keyfile = strlen(keyfile);
*result = 0;
key = calloc(1, sizeof(ed25519_key_t));
assert(key);
if (use_keyfile) {
file = fopen(keyfile, "r");
if (file) {
bp = BIO_new_fp(file, BIO_NOCLOSE);
key->pkey = PEM_read_PrivateKey(file, NULL, NULL, NULL);
BIO_free(bp);
fclose(file);
if (!key->pkey) {
new_pk = true;
}
} else {
new_pk = true;
}
} else {
/* generate (insecure) persistent keypair using device_id */
unsigned char hash[SHA512_DIGEST_LENGTH];
char salt[] = SALT_PK;
sha_ctx_t *ctx = sha_init();
sha_update(ctx, (const unsigned char *) salt, (unsigned int) strlen(salt));
sha_update(ctx, (const unsigned char *) device_id, (unsigned int) strlen(device_id));
sha_final(ctx, hash, NULL);
sha_destroy(ctx);
key->pkey = EVP_PKEY_new_raw_private_key(EVP_PKEY_ED25519, NULL, (const unsigned char *) hash, ED25519_KEY_SIZE);
}
if (new_pk) {
pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_ED25519, NULL);
if (!pctx) {
handle_error(__func__);
}
if (!EVP_PKEY_keygen_init(pctx)) {
handle_error(__func__);
}
if (!EVP_PKEY_keygen(pctx, &key->pkey)) {
handle_error(__func__);
}
EVP_PKEY_CTX_free(pctx);
if (use_keyfile) {
file = fopen(keyfile, "w");
if (file) {
bp = BIO_new_fp(file, BIO_NOCLOSE);
PEM_write_bio_PrivateKey(bp, key->pkey, NULL, NULL, 0, NULL, NULL);
BIO_free(bp);
fclose(file);
*result = 1;
}
}
}
return key;
}
ed25519_key_t *ed25519_key_from_raw(const unsigned char data[ED25519_KEY_SIZE]) {
ed25519_key_t *key;
key = malloc(sizeof(ed25519_key_t));
assert(key);
key->pkey = EVP_PKEY_new_raw_public_key(EVP_PKEY_ED25519, NULL, data, ED25519_KEY_SIZE);
if (!key->pkey) {
handle_error(__func__);
}
return key;
}
void ed25519_key_get_raw(unsigned char data[ED25519_KEY_SIZE], const ed25519_key_t *key) {
assert(key);
if (!EVP_PKEY_get_raw_public_key(key->pkey, data, &(size_t) {ED25519_KEY_SIZE})) {
handle_error(__func__);
}
}
ed25519_key_t *ed25519_key_copy(const ed25519_key_t *key) {
ed25519_key_t *new_key;
assert(key);
new_key = malloc(sizeof(ed25519_key_t));
assert(new_key);
new_key->pkey = key->pkey;
if (!EVP_PKEY_up_ref(key->pkey)) {
handle_error(__func__);
}
return new_key;
}
void ed25519_sign(unsigned char *signature, size_t signature_len,
const unsigned char *data, size_t data_len,
const ed25519_key_t *key)
{
EVP_MD_CTX *mctx;
mctx = EVP_MD_CTX_new();
if (!mctx) {
handle_error(__func__);
}
if (!EVP_DigestSignInit(mctx, NULL, NULL, NULL, key->pkey)) {
handle_error(__func__);
}
if (!EVP_DigestSign(mctx, signature, &signature_len, data, data_len)) {
handle_error(__func__);
}
EVP_MD_CTX_free(mctx);
}
int ed25519_verify(const unsigned char *signature, size_t signature_len,
const unsigned char *data, size_t data_len,
const ed25519_key_t *key)
{
EVP_MD_CTX *mctx;
mctx = EVP_MD_CTX_new();
if (!mctx) {
handle_error(__func__);
}
if (!EVP_DigestVerifyInit(mctx, NULL, NULL, NULL, key->pkey)) {
handle_error(__func__);
}
int ret = EVP_DigestVerify(mctx, signature, signature_len, data, data_len);
if (ret < 0) {
handle_error(__func__);
}
EVP_MD_CTX_free(mctx);
return ret;
}
void ed25519_key_destroy(ed25519_key_t *key) {
if (key) {
EVP_PKEY_free(key->pkey);
free(key);
}
}
// SHA 512
struct sha_ctx_s {
EVP_MD_CTX *digest_ctx;
};
sha_ctx_t *sha_init() {
sha_ctx_t *ctx = malloc(sizeof(sha_ctx_t));
assert(ctx != NULL);
ctx->digest_ctx = EVP_MD_CTX_new();
assert(ctx->digest_ctx != NULL);
if (!EVP_DigestInit_ex(ctx->digest_ctx, EVP_sha512(), NULL)) {
handle_error(__func__);
}
return ctx;
}
void sha_update(sha_ctx_t *ctx, const uint8_t *in, int len) {
if (!EVP_DigestUpdate(ctx->digest_ctx, in, len)) {
handle_error(__func__);
}
}
void sha_final(sha_ctx_t *ctx, uint8_t *out, unsigned int *len) {
if (!EVP_DigestFinal_ex(ctx->digest_ctx, out, len)) {
handle_error(__func__);
}
}
void sha_reset(sha_ctx_t *ctx) {
if (!EVP_MD_CTX_reset(ctx->digest_ctx) ||
!EVP_DigestInit_ex(ctx->digest_ctx, EVP_sha512(), NULL)) {
handle_error(__func__);
}
}
void sha_destroy(sha_ctx_t *ctx) {
if (ctx) {
EVP_MD_CTX_free(ctx->digest_ctx);
free(ctx);
}
}
int get_random_bytes(unsigned char *buf, int num) {
return RAND_bytes(buf, num);
}
#include <stdio.h>
void pk_to_base64(const unsigned char *pk, int pk_len, char *pk_base64, int len) {
memset(pk_base64, 0, len);
int len64 = (4 * (pk_len /3)) + (pk_len % 3 ? 4 : 0);
assert (len > len64);
BIO *b64 = BIO_new(BIO_f_base64());
BIO *bio = BIO_new(BIO_s_mem());
BUF_MEM *bufferPtr;
bio = BIO_push(b64, bio);
BIO_set_flags(bio, BIO_FLAGS_BASE64_NO_NL);
BIO_write(bio, pk, pk_len);
BIO_flush(bio);
BIO_get_mem_ptr(bio, &bufferPtr);
BIO_set_close(bio, BIO_NOCLOSE);
BIO_free_all(bio);
memcpy(pk_base64,(*bufferPtr).data, len64);
}