1. 增加本地离线控制功能

2. 优化代码逻辑加入很多异步操作
3. 适配switch相关物模型
This commit is contained in:
2025-07-16 20:09:45 +08:00
parent 957fa9ad3b
commit 6b6e483fa0
15 changed files with 1783 additions and 462 deletions

View File

@ -42,6 +42,7 @@
//static bool g_switch = 0;
int sid_switch;
static bool g_autoUpdate = 0;
static int ble_adv_time = 0;
static HILINK_BT_DevInfo g_btDevInfo = {0};
extern int set_get_ble_mac(void);
extern int HILINK_Printf(const char *format, ...);
@ -255,6 +256,7 @@ static void ReporFwvCheckSum(void)
}
#endif
static int ble_sdk_running = 0;
static void HILINK_BT_StateChangeHandler(HILINK_BT_SdkStatus event, const void *param)
{
(void)param;
@ -269,10 +271,12 @@ static void HILINK_BT_StateChangeHandler(HILINK_BT_SdkStatus event, const void *
HILINK_SAL_ERROR("set addr err\n");
}
/* 设置蓝牙广播格式,包括靠近发现、碰一碰等,下一次发送广播生效 */
BLE_SetAdvType(BLE_ADV_NEARBY_V0);
BLE_SetAdvType(BLE_ADV_LOCAL_NAME);
/* BLE配网广播控制参数代表广播时间0:停止0xFFFFFFFF:一直广播,其他:广播指定时间后停止,单位秒 */
(void)BLE_CfgNetAdvCtrl(BLE_ADV_TIME);
(void)BLE_CfgNetAdvCtrl(ble_adv_time);
ble_sdk_running = 1;
e_printf("callback set ble adv time: %ds\n", ble_adv_time);
}
}
@ -308,6 +312,18 @@ static int BleHandleCustomDataGet(const char *sid)
// 参考链接 https://device.harmonyos.com/cn/docs/devicepartner/DevicePartner-Guides/device-development-ble-specifications-control-0000001482432154
static int BleHandleCustomData(const char *buff, unsigned int len)
{
// 添加四开关面板的蓝牙处理
extern int switch_panel_ble_handle_custom_data(const char *buff, unsigned int len);
// 优先使用四开关面板的蓝牙处理逻辑
int panel_result = switch_panel_ble_handle_custom_data(buff, len);
if (panel_result == 0) {
// 四开关面板成功处理了该指令
return 0;
}
// 如果面板处理失败,回退到原有的处理逻辑
HILINK_SAL_NOTICE("开关面板处理失败,使用默认处理逻辑\r\n");
if (strcmp((char *)buff, "{}") == 0) {
/* 上报全量数据 */
ReporSwitchStatus();
@ -424,10 +440,20 @@ unsigned int GetWifiRecoveryType(void)
{
return (0x01 | 0x02);
}
int start_hilink_ble_net_config(int32_t net_cfg_time_s)
{
ble_adv_time = net_cfg_time_s;
e_printf("set ble adv time: %ds\n", ble_adv_time);
if (ble_sdk_running) {
BLE_CfgNetAdvCtrl(ble_adv_time);
}
return 0;
}
int hilink_ble_main(void)
{
int ret = 0;
hfset_hilink_mode(SMTLK_BLE_FAST_CONNECT);
int hilink_entry_mode=hfget_hilink_mode();
printf("hilink_entry_mode:%d\r\n",hilink_entry_mode);
if(hilink_entry_mode != SMTLK_SOFTAP)
@ -448,6 +474,7 @@ int hilink_ble_main(void)
HILINK_EnableSle();
HILINK_EnablePrescan();
HILINK_SetProtType(17);
e_printf("SMTLK_BLE_FAST_CONNECT\r\n");
}
ret = HILINK_SetNetConfigMode(HILINK_NETCONFIG_OTHER);
@ -457,25 +484,27 @@ int hilink_ble_main(void)
ret = BLE_SetAdvNameMpp(mpp, sizeof(mpp));
if (ret != 0) {
HILINK_SAL_NOTICE("set adv name mpp failed\r\n");
return -1;
}
return -1;
}
/* 注册SDK状态接收函数可在初始化完成后发送广播 */
ret = HILINK_BT_SetSdkEventCallback(HILINK_BT_StateChangeHandler);
if (ret != 0) {
/* 注册SDK状态接收函数可在初始化完成后发送广播 */
ret = HILINK_BT_SetSdkEventCallback(HILINK_BT_StateChangeHandler);
if (ret != 0) {
HILINK_SAL_NOTICE("set event callback failed\r\n");
return -1;
}
return -1;
}
/* 设置广播方式为靠近发现 */
BLE_SetAdvType(BLE_ADV_NEARBY_V0);
/* 设置广播方式为靠近发现 */
BLE_SetAdvType(BLE_ADV_LOCAL_NAME);
/* 初始化ble sdk */
ret = BLE_CfgNetInit(&g_bleInitParam, &g_bleCfgNetCb);
if (ret != 0) {
/* 初始化ble sdk */
ret = BLE_CfgNetInit(&g_bleInitParam, &g_bleCfgNetCb);
if (ret != 0) {
HILINK_SAL_NOTICE("ble sdk init fail\r\n");
return -1;
}
e_printf("ble sdk init success\r\n");
//set_get_ble_mac();
}
else if(hilink_entry_mode == SMTLK_SOFTAP)
{
@ -520,6 +549,16 @@ int hilink_ble_main(void)
HILINK_SAL_NOTICE("HILINK_Main start error");
return -1;
}
e_printf("HILINK_Main start success\r\n");
hf_set_hilink_main_runing();
// HILINK_RestoreFactorySettings();
return 0;
}
}
#ifndef CONFIG_SUPPORT_HILINK_INDIE_UPGRADE
// EKKO remove indie upgrade
int hilink_indie_upgrade_main(void)
{
return 0;
}
#endif

View File

@ -17,15 +17,15 @@ extern "C" {
*/
#define ProductId "2Q4S"
#define deviceTypeId "21S"
#define ProductId "2Q4G"
#define deviceTypeId "201"
#define manufacturerID "gub"
#define deviceModel "SR-SW-020-10S"
#define deviceModel "S15"
#define configName "SR_S"
#define configType "witch"
#define enterpriseEnglishName "SORONTEK"
#define brandEn "SORONTEK"
#define deviceName "SORONTEK智能开关面板"
#define deviceName "SORONTEK智能面板"
#define productSeries ""
#define DEVICE_HIVERSION "1.0.0"

View File

@ -18,7 +18,7 @@
#include "hilink_device.h"
#ifdef CONFIG_SUPPORT_HILINK_INDIE_UPGRADE
#include "hilink_entry.h"
#endif
extern void handle_device_online(void);
extern void handle_device_unbind(void);
extern void handle_device_offline(void);
@ -40,7 +40,7 @@ static const HILINK_SvcInfo SVC_INFO[] = {
{ "switch", "switch" },
{ "switch", "switch4" },
#ifdef CONFIG_SUPPORT_HILINK_INDIE_UPGRADE
//{ "checkSum", "checkSum" },
{ "checkSum", "checkSum" },
#endif
};
@ -177,14 +177,124 @@ int not_support_put(const char* svc_id, const char* payload, unsigned int len)
HILINK_Printf("sid:%s NOT SUPPORT PUT function \r\n", svc_id);
return 0;
}
#if 0
// 服务处理函数
int handle_put_switch3(const char* svc_id, const char* payload, unsigned int len)
{
cJSON* pJson = cJSON_Parse(payload);
if (!pJson)
return -1;
cJSON* on_item = cJSON_GetObjectItem(pJson, "on");
if (on_item)
g_device_info.switch3_on = on_item->valueint;
cJSON* name_item = cJSON_GetObjectItem(pJson, "name");
if (name_item)
g_device_info.switch3_name = name_item->valueint;
HILINK_Printf("%s:%d svcId:%s, payload:%s\r\n", __FUNCTION__, __LINE__, svc_id, payload);
cJSON_Delete(pJson);
return 0;
}
int handle_get_switch3(const char* svc_id, const char* in, unsigned int in_len, char** out, unsigned int* out_len)
{
*out_len = 64;
*out = (char*)malloc(*out_len);
if (*out == NULL)
return -1;
*out_len = sprintf_s(*out, *out_len, "{\"on\":%d, \"name\":%d}", g_device_info.switch3_on, g_device_info.switch3_name);
HILINK_Printf("%s:%d svcId:%s, *out:%s\r\n", __FUNCTION__, __LINE__, svc_id, *out);
return 0;
}
int handle_put_switch2(const char* svc_id, const char* payload, unsigned int len)
{
cJSON* pJson = cJSON_Parse(payload);
if (!pJson)
return -1;
cJSON* on_item = cJSON_GetObjectItem(pJson, "on");
if (on_item)
g_device_info.switch2_on = on_item->valueint;
cJSON* name_item = cJSON_GetObjectItem(pJson, "name");
if (name_item)
g_device_info.switch2_name = name_item->valueint;
HILINK_Printf("%s:%d svcId:%s, payload:%s\r\n", __FUNCTION__, __LINE__, svc_id, payload);
cJSON_Delete(pJson);
return 0;
}
int handle_get_switch2(const char* svc_id, const char* in, unsigned int in_len, char** out, unsigned int* out_len)
{
*out_len = 64;
*out = (char*)malloc(*out_len);
if (*out == NULL)
return -1;
*out_len = sprintf_s(*out, *out_len, "{\"on\":%d, \"name\":%d}", g_device_info.switch2_on, g_device_info.switch2_name);
HILINK_Printf("%s:%d svcId:%s, *out:%s\r\n", __FUNCTION__, __LINE__, svc_id, *out);
return 0;
}
int handle_put_switch1(const char* svc_id, const char* payload, unsigned int len)
{
cJSON* pJson = cJSON_Parse(payload);
if (!pJson)
return -1;
cJSON* on_item = cJSON_GetObjectItem(pJson, "on");
if (on_item)
g_device_info.switch1_on = on_item->valueint;
cJSON* name_item = cJSON_GetObjectItem(pJson, "name");
if (name_item)
g_device_info.switch1_name = name_item->valueint;
HILINK_Printf("%s:%d svcId:%s, payload:%s\r\n", __FUNCTION__, __LINE__, svc_id, payload);
cJSON_Delete(pJson);
return 0;
}
int handle_get_switch1(const char* svc_id, const char* in, unsigned int in_len, char** out, unsigned int* out_len)
{
*out_len = 64;
*out = (char*)malloc(*out_len);
if (*out == NULL)
return -1;
*out_len = sprintf_s(*out, *out_len, "{\"on\":%d, \"name\":%d}", g_device_info.switch1_on, g_device_info.switch1_name);
HILINK_Printf("%s:%d svcId:%s, *out:%s\r\n", __FUNCTION__, __LINE__, svc_id, *out);
return 0;
}
int handle_put_switch4(const char* svc_id, const char* payload, unsigned int len)
{
cJSON* pJson = cJSON_Parse(payload);
if (!pJson)
return -1;
cJSON* on_item = cJSON_GetObjectItem(pJson, "on");
if (on_item)
g_device_info.switch4_on = on_item->valueint;
cJSON* name_item = cJSON_GetObjectItem(pJson, "name");
if (name_item)
g_device_info.switch4_name = name_item->valueint;
HILINK_Printf("%s:%d svcId:%s, payload:%s\r\n", __FUNCTION__, __LINE__, svc_id, payload);
cJSON_Delete(pJson);
return 0;
}
int handle_get_switch4(const char* svc_id, const char* in, unsigned int in_len, char** out, unsigned int* out_len)
{
*out_len = 64;
*out = (char*)malloc(*out_len);
if (*out == NULL)
return -1;
*out_len = sprintf_s(*out, *out_len, "{\"on\":%d, \"name\":%d}", g_device_info.switch4_on, g_device_info.switch4_name);
HILINK_Printf("%s:%d svcId:%s, *out:%s\r\n", __FUNCTION__, __LINE__, svc_id, *out);
return 0;
}
#endif
HANDLE_SVC_INFO g_device_profile[] = {
{"switch3", handle_put_switch3, handle_get_switch3},
{"switch2", handle_put_switch2, handle_get_switch2},
{"switch1", handle_put_switch1, handle_get_switch1},
{"switch", handle_put_switch, handle_get_switch},
{"switch1", handle_put_switch1, handle_get_switch1},
{"switch2", handle_put_switch2, handle_get_switch2},
{"switch3", handle_put_switch3, handle_get_switch3},
{"switch4", handle_put_switch4, handle_get_switch4},
// 故障不支持 HILINK_PutCharState配置 not_support_put
{"switch4", handle_put_switch4, handle_get_switch4},
};
// 服务总数量
int g_device_profile_count = sizeof(g_device_profile) / sizeof(HANDLE_SVC_INFO);
@ -233,14 +343,29 @@ int handle_get_cmd(const char* svc_id, const char* in, unsigned int in_len, char
}
// 快速上报函数,用于上报服务状态信息
// 支持蓝牙和云端双模式上报
int fast_report(const char* svc_id)
{
// 引入外部的蓝牙控制函数
extern bool switch_panel_ble_is_enabled(void);
extern int switch_panel_ble_fast_report(const char *svc_id);
// 检查当前是否处于蓝牙控制模式
if (switch_panel_ble_is_enabled()) {
// 蓝牙模式下通过蓝牙上报
e_printf("[FAST_REPORT] 蓝牙模式上报: %s\r\n", svc_id);
return switch_panel_ble_fast_report(svc_id);
}
// 云端模式下通过HiLink上报
e_printf("[FAST_REPORT] 云端模式上报: %s\r\n", svc_id);
char* payload = NULL;
int len;
int err = handle_get_cmd(svc_id, NULL, 0, &payload, (unsigned int *)&len);
if(err != 0) {
HILINK_Printf("get msg from %s failed \r\n", svc_id);
return err;
HILINK_Printf("get msg from %s failed \r\n", svc_id);
return err;
}
err = HILINK_ReportCharState(svc_id, payload, len);
HILINK_Printf("report %s result is %d, payload:%s \r\n", svc_id, err, payload);
@ -255,9 +380,10 @@ int fast_report(const char* svc_id)
*/
int HILINK_PutCharState(const char *svcId, const char *payload, unsigned int len)
{
e_printf("[HILINK_PutCharState] 收到控制指令: svcId=%s, payload=%s\r\n", svcId, payload);
e_printf("收到控制指令: svcId=%s, payload=%s\r\n", svcId, payload);
if ((svcId == NULL) || (payload == NULL)) {
e_printf("参数无效\r\n");
return -1;
}
@ -268,7 +394,7 @@ int HILINK_PutCharState(const char *svcId, const char *payload, unsigned int len
cJSON_Delete(json);
int err = handle_put_cmd(svcId, payload, len);
e_printf("[HILINK_PutCharState] 控制指令处理完成,返回值: %d\r\n", err);
e_printf("控制指令处理完成,返回值: %d\r\n", err);
return err;
}
#ifdef CONFIG_SUPPORT_HILINK_INDIE_UPGRADE

View File

@ -69,7 +69,12 @@ void HSF_API HF_Debug(int debug_level, const char *format , ... );
#define hfdbg_warn(...) HF_Debug(DEBUG_WARN,"[warnning %d %s %d]",hfsys_get_time(),__FUNCTION__,__LINE__); \
HF_Debug(DEBUG_WARN,__VA_ARGS__)
#define u_printf(...) HF_Debug(DEBUG_LEVEL_USER,__VA_ARGS__)
#define e_printf(...) \
do { \
HF_Debug(DEBUG_WARN, "[Ekko]%d %s():%d: ", hfsys_get_time(), \
__FUNCTION__, __LINE__); \
HF_Debug(DEBUG_WARN, __VA_ARGS__); \
} while (0)
int hfuart_config(hfuart_handle_t huart, int baudrate, ENCOMPARITY_E parity, ENCOMBITS_E databits, ENCOMSTOPBITS_E stopbits, ENCOMUARTCTL_E fc);

View File

@ -10,6 +10,7 @@ set(SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/switch_panel/switch_panel_keys.c
${CMAKE_CURRENT_SOURCE_DIR}/switch_panel/switch_panel_hilink.c
${CMAKE_CURRENT_SOURCE_DIR}/switch_panel/switch_panel_config.c
${CMAKE_CURRENT_SOURCE_DIR}/switch_panel/switch_panel_ble.c
)
if (DEFINES MATCHES "HF_MCU_OTA")

View File

@ -78,24 +78,48 @@ typedef enum {
} system_mode_t;
//====================== 设备状态结构 ======================
// 单个开关状态信息
// 开关名字最大长度
#define SWITCH_NAME_MAX_LEN 32
// 单个开关的持久化状态信息需要保存到Flash
typedef struct {
bool switch_on; // 开关状态 (true=开, false=关) - 持久化
bool led_state; // LED状态 (true=白灯, false=黄灯) - 持久化
char name[SWITCH_NAME_MAX_LEN]; // 开关名字 - 持久化
} switch_persistent_info_t;
// 单个开关的运行时状态信息(不需要持久化)
typedef struct {
bool switch_on; // 开关状态 (true=开, false=关)
bool led_state; // LED状态 (true=白灯, false=黄灯)
bool physical_key; // 物理按键状态 (true=松开, false=按下)
} switch_info_t;
uint32_t press_time; // 按键按下时间戳
bool debounce_flag; // 防抖标志
bool long_press_handled; // 长按处理标志
} switch_runtime_info_t;
// 系统设备状态
// 持久化设备状态需要保存到Flash
typedef struct {
switch_info_t switches[SWITCH_COUNT]; // 4个开关的状态
bool master_switch; // 总开关状态
bool panel_led; // 面板背光状态
bool is_bound; // 设备绑定状态
bool is_first_boot; // 是否第一次上电
system_mode_t mode; // 系统工作模式
uint32_t reserved[10]; // 保留字段
} device_state_t;
switch_persistent_info_t switches[SWITCH_COUNT]; // 4个开关的持久化状态
bool master_switch; // 总开关状态 - 持久化
bool panel_led; // 面板背光状态 - 持久化
bool is_bound; // 设备绑定状态 - 持久化
bool is_first_boot; // 是否第一次上电 - 持久化
uint32_t magic; // 魔数标识
uint32_t version; // 版本号
uint32_t reserved[8]; // 保留字段
} device_persistent_state_t;
// 运行时设备状态(不需要持久化,断电丢失)
typedef struct {
switch_runtime_info_t switches[SWITCH_COUNT]; // 4个开关的运行时状态
system_mode_t mode; // 系统工作模式(运行时状态)
bool ble_mode_enabled; // 蓝牙模式是否启用
uint32_t config_start_time; // 配网开始时间
int config_key_id; // 触发配网的按键ID
bool config_led_blink_state; // 配网LED闪烁状态
bool factory_test_running; // 产测是否运行中
uint32_t last_save_time; // 上次保存时间
uint32_t reserved[16]; // 保留字段
} device_runtime_state_t;
//====================== Flash存储相关 ======================
@ -121,21 +145,34 @@ typedef struct {
//====================== 配网相关定义 ======================
#define FACTORY_TEST_SSID "ShuorongSelfTest" // 产测热点名称
#define CONFIG_ENTRY_COUNT 3 // 连续重启次数进入配网
//====================== 任务和定时器相关 ======================
#define TASK_STACK_SIZE 2048
#define TASK_STACK_SIZE 0x1000
#define TASK_PRIORITY_HIGH OSAL_TASK_PRIORITY_HIGH
#define TASK_PRIORITY_NORM OSAL_TASK_PRIORITY_MIDDLE
#define TASK_PRIORITY_LOW OSAL_TASK_PRIORITY_LOW
//====================== 异步上报系统相关 ======================
// 定义服务ID的位掩码
#define REPORT_SWITCH_MASK 0x01 // switch (总开关)
#define REPORT_SWITCH1_MASK 0x02 // switch1
#define REPORT_SWITCH2_MASK 0x04 // switch2
#define REPORT_SWITCH3_MASK 0x08 // switch3
#define REPORT_SWITCH4_MASK 0x10 // switch4
#define REPORT_ALL_MASK 0x1F // 所有开关
// 异步上报系统相关变量
extern osal_task *g_report_task_handle; // 异步上报任务句柄
//====================== 全局变量声明 ======================
extern device_state_t g_device_state;
extern device_persistent_state_t g_persistent_state;
extern device_runtime_state_t g_runtime_state;
extern timer_handle_t g_key_debounce_timer[SWITCH_COUNT];
extern timer_handle_t g_config_timeout_timer;
extern timer_handle_t g_config_blink_timer;
// 配网定时器变量已移除,配网逻辑简化
extern osal_task *g_key_scan_task_handle;
extern osal_task *g_config_task_handle;
extern osal_task *g_save_task_handle; // 异步保存任务句柄
extern osal_task *g_report_task_handle; // 异步上报任务句柄
//====================== 函数声明 ======================
@ -151,14 +188,41 @@ void set_panel_led(panel_led_state_t state);
bool get_key_input(int key_id);
// 设备状态管理函数
int load_device_state(void);
int save_device_state(void);
void reset_device_state(void);
int load_persistent_state(void);
int save_persistent_state(void); // 异步保存(触发保存任务)
int save_persistent_state_sync(void); // 同步保存直接写入Flash
int save_system_init(void); // 初始化异步保存系统
void save_system_deinit(void); // 清理异步保存系统
void reset_persistent_state(void);
void init_runtime_state(void);
void sync_hardware_state(void);
void fast_report_switch(int switch_id);
void fast_report_master_switch(void);
void set_device_mode(system_mode_t mode);
// 状态访问便利函数
bool get_switch_state(int switch_id);
bool get_master_switch_state(void);
bool is_device_bound(void);
bool is_first_boot(void);
system_mode_t get_device_mode(void);
// 异步上报系统管理函数
int report_system_init(void); // 初始化异步上报系统
void report_system_deinit(void); // 清理异步上报系统
void trigger_async_report(uint8_t report_mask); // 触发异步上报
int async_report_task(void *arg); // 异步上报任务
// 快速上报函数(新的异步版本)
void fast_report_switch_async(int switch_id); // 异步上报单个开关
void fast_report_master_switch_async(void); // 异步上报总开关
void fast_report_all_switches_async(void); // 异步上报所有开关
// 开关名字操作函数
const char* get_switch_name(int switch_id);
int set_switch_name(int switch_id, const char* name);
void init_default_switch_names(void);
// 开关控制函数
void update_switch_state(int switch_id, bool state);
void update_master_switch(bool state);
@ -205,7 +269,19 @@ const char* get_mode_string(system_mode_t mode);
// 定时器回调函数
void key_debounce_timer_callback(uintptr_t data);
void config_timeout_timer_callback(uintptr_t data);
void config_blink_timer_callback(uintptr_t data);
// 配网定时器回调函数已移除配网逻辑现在在config_mode_task中直接处理
//====================== 蓝牙控制相关函数 ======================
// 蓝牙数据处理
int switch_panel_ble_handle_custom_data(const char *buff, unsigned int len);
// 蓝牙模式管理
void switch_panel_ble_enable(void);
void switch_panel_ble_disable(void);
bool switch_panel_ble_is_enabled(void);
// 蓝牙上报
int switch_panel_ble_fast_report(const char *svc_id);
int start_hilink_ble_net_config(int32_t net_cfg_time_s);
#endif // __SWITCH_PANEL_H__

View File

@ -0,0 +1,284 @@
#include "switch_panel.h"
#include "hilink_device.h"
#include "ble_cfg_net_api.h"
#include "cJSON.h"
#include "securec.h"
//====================== 蓝牙控制相关常量 ======================
#define SWITCH_BLE_REPORT "{\"data\":{\"on\":%d},\"sid\":\"%s\"}"
#define SWITCH_BLE_NAME_REPORT "{\"data\":{\"on\":%d,\"name\":\"%s\"},\"sid\":\"%s\"}"
//====================== 蓝牙控制状态变量 ======================
static bool g_ble_mode_enabled = false; // 蓝牙控制模式是否启用
//====================== 蓝牙上报函数 ======================
// 通过蓝牙上报总开关状态
static void ble_report_master_switch(void) {
char buff[128] = {0};
int ret = snprintf_s(buff, sizeof(buff), sizeof(buff) - 1,
SWITCH_BLE_REPORT,
g_persistent_state.master_switch ? 1 : 0,
"switch");
if (ret <= 0) {
e_printf("[BLE] 总开关状态格式化失败: %d\r\n", ret);
return;
}
unsigned int buffLen = strlen(buff);
ret = BLE_SendCustomData(CUSTOM_SEC_DATA, (const unsigned char *)buff, buffLen);
e_printf("[BLE] 上报总开关状态: %s, 结果: %d\r\n", buff, ret);
}
// 通过蓝牙上报单个开关状态
static void ble_report_switch_state(int switch_id) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT) {
e_printf("[BLE] 无效的开关ID: %d\r\n", switch_id);
return;
}
char buff[128] = {0};
char svc_id[16] = {0};
char switch_name[16] = {0};
snprintf_s(svc_id, sizeof(svc_id), sizeof(svc_id) - 1, "switch%d", switch_id + 1);
snprintf_s(switch_name, sizeof(switch_name), sizeof(switch_name) - 1, "开关%d", switch_id + 1);
int ret = snprintf_s(buff, sizeof(buff), sizeof(buff) - 1,
SWITCH_BLE_NAME_REPORT,
g_persistent_state.switches[switch_id].switch_on ? 1 : 0,
switch_name,
svc_id);
if (ret <= 0) {
e_printf("[BLE] 开关%d状态格式化失败: %d\r\n", switch_id + 1, ret);
return;
}
unsigned int buffLen = strlen(buff);
ret = BLE_SendCustomData(CUSTOM_SEC_DATA, (const unsigned char *)buff, buffLen);
e_printf("[BLE] 上报开关%d状态: %s, 结果: %d\r\n", switch_id + 1, buff, ret);
}
// 通过蓝牙上报所有开关状态
static void ble_report_all_switches(void) {
e_printf("[BLE] 开始上报所有开关状态\r\n");
// 上报总开关状态
ble_report_master_switch();
// 上报所有子开关状态
for (int i = 0; i < SWITCH_COUNT; i++) {
ble_report_switch_state(i);
osal_msleep(50); // 避免发送过快
}
e_printf("[BLE] 所有开关状态上报完成\r\n");
}
//====================== 蓝牙接收数据处理 ======================
// 处理总开关控制指令
static int ble_handle_master_switch(cJSON *dataItem) {
cJSON *onItem = cJSON_GetObjectItem(dataItem, "on");
if (onItem == NULL || !cJSON_IsNumber(onItem)) {
e_printf("[BLE] 总开关控制指令格式错误\r\n");
return -1;
}
bool new_state = (onItem->valueint != 0);
e_printf("[BLE] 接收到总开关控制指令: %s\r\n", new_state ? "" : "");
// 调用现有的总开关控制函数
update_master_switch(new_state);
// 通过蓝牙上报状态确认
ble_report_master_switch();
return 0;
}
// 处理子开关控制指令
static int ble_handle_switch_control(const char *svc_id, cJSON *dataItem) {
// 解析开关ID (switch1 -> 0, switch2 -> 1, etc.)
int switch_id = -1;
if (strcmp(svc_id, "switch1") == 0) {
switch_id = 0;
} else if (strcmp(svc_id, "switch2") == 0) {
switch_id = 1;
} else if (strcmp(svc_id, "switch3") == 0) {
switch_id = 2;
} else if (strcmp(svc_id, "switch4") == 0) {
switch_id = 3;
} else {
e_printf("[BLE] 未知的开关ID: %s\r\n", svc_id);
return -1;
}
cJSON *onItem = cJSON_GetObjectItem(dataItem, "on");
if (onItem == NULL || !cJSON_IsNumber(onItem)) {
e_printf("[BLE] 开关%d控制指令格式错误\r\n", switch_id + 1);
return -1;
}
bool new_state = (onItem->valueint != 0);
e_printf("[BLE] 接收到开关%d控制指令: %s\r\n", switch_id + 1, new_state ? "" : "");
// 调用现有的开关控制函数
update_switch_state(switch_id, new_state);
// 通过蓝牙上报状态确认
ble_report_switch_state(switch_id);
return 0;
}
// 处理状态查询指令
static int ble_handle_status_query(const char *svc_id) {
e_printf("[BLE] 接收到状态查询: %s\r\n", svc_id);
if (strcmp(svc_id, "switch") == 0) {
// 查询总开关状态
ble_report_master_switch();
} else if (strncmp(svc_id, "switch", 6) == 0 && strlen(svc_id) == 7) {
// 查询子开关状态 (switch1, switch2, etc.)
int switch_id = svc_id[6] - '1'; // '1' -> 0, '2' -> 1, etc.
if (switch_id >= 0 && switch_id < SWITCH_COUNT) {
ble_report_switch_state(switch_id);
} else {
e_printf("[BLE] 无效的开关查询ID: %s\r\n", svc_id);
return -1;
}
} else {
e_printf("[BLE] 未知的查询ID: %s\r\n", svc_id);
return -1;
}
return 0;
}
//====================== 蓝牙数据处理主函数 ======================
// 处理蓝牙接收的自定义数据
int switch_panel_ble_handle_custom_data(const char *buff, unsigned int len) {
if (buff == NULL || len == 0) {
e_printf("[BLE] 接收数据为空\r\n");
return -1;
}
e_printf("[BLE] 接收到数据: %s (长度: %u)\r\n", buff, len);
// 处理空JSON请求 - 上报全量状态
if (strcmp(buff, "{}") == 0) {
e_printf("[BLE] 收到全量状态请求\r\n");
ble_report_all_switches();
return 0;
}
// 解析JSON数据
cJSON *json = cJSON_Parse(buff);
if (json == NULL) {
e_printf("[BLE] JSON解析失败\r\n");
return -1;
}
int ret = -1;
do {
// 获取服务ID
cJSON *sidItem = cJSON_GetObjectItem(json, "sid");
if (sidItem == NULL || !cJSON_IsString(sidItem) || sidItem->valuestring == NULL) {
e_printf("[BLE] 缺少或无效的服务ID\r\n");
break;
}
const char *svc_id = sidItem->valuestring;
cJSON *dataItem = cJSON_GetObjectItem(json, "data");
// 处理特殊服务ID
if (strcmp(svc_id, "allservices") == 0) {
// H5连接时的状态同步请求
e_printf("[BLE] H5连接同步所有状态\r\n");
ble_report_all_switches();
ret = 0;
break;
} else if (strcmp(svc_id, "currentTime") == 0) {
// 时间同步(可选实现)
e_printf("[BLE] 接收到时间同步请求\r\n");
ret = 0;
break;
}
// 如果没有data字段表示状态查询
if (dataItem == NULL) {
ret = ble_handle_status_query(svc_id);
break;
}
// 处理控制指令
if (strcmp(svc_id, "switch") == 0) {
// 总开关控制
ret = ble_handle_master_switch(dataItem);
} else if (strncmp(svc_id, "switch", 6) == 0 && strlen(svc_id) == 7) {
// 子开关控制 (switch1, switch2, switch3, switch4)
ret = ble_handle_switch_control(svc_id, dataItem);
} else {
e_printf("[BLE] 未知的服务ID: %s\r\n", svc_id);
}
} while (0);
cJSON_Delete(json);
return ret;
}
//====================== 蓝牙模式管理 ======================
// 启用蓝牙控制模式
void switch_panel_ble_enable(void) {
g_ble_mode_enabled = true;
e_printf("[BLE] 蓝牙控制模式已启用\r\n");
}
// 禁用蓝牙控制模式
void switch_panel_ble_disable(void) {
g_ble_mode_enabled = false;
e_printf("[BLE] 蓝牙控制模式已禁用\r\n");
}
// 检查蓝牙控制模式是否启用
bool switch_panel_ble_is_enabled(void) {
return g_ble_mode_enabled;
}
//====================== 蓝牙上报接口 ======================
// 蓝牙模式下的快速上报函数
int switch_panel_ble_fast_report(const char *svc_id) {
if (!g_ble_mode_enabled) {
return -1; // 蓝牙模式未启用
}
if (svc_id == NULL) {
e_printf("[BLE] 服务ID为空\r\n");
return -1;
}
e_printf("[BLE] 快速上报服务: %s\r\n", svc_id);
if (strcmp(svc_id, "switch") == 0) {
ble_report_master_switch();
} else if (strcmp(svc_id, "switch1") == 0) {
ble_report_switch_state(0);
} else if (strcmp(svc_id, "switch2") == 0) {
ble_report_switch_state(1);
} else if (strcmp(svc_id, "switch3") == 0) {
ble_report_switch_state(2);
} else if (strcmp(svc_id, "switch4") == 0) {
ble_report_switch_state(3);
} else {
e_printf("[BLE] 未知的服务ID: %s\r\n", svc_id);
return -1;
}
return 0;
}

View File

@ -10,35 +10,190 @@
#include "timer.h"
#include "soc_osal.h"
#include "systick.h"
#include "wifi_hotspot.h"
#include "wifi_hotspot_config.h"
#include "lwip/netifapi.h"
//====================== 配网相关变量 ======================
static bool g_config_led_blink_state = false;
static bool g_panel_led_blink_state = false;
static uint32_t g_config_blink_start_time = 0;
static int g_config_key_id = -1; // 触发配网的按键
int g_config_key_id = -1; // 触发配网的按键 - 移除static使其可被外部访问
//====================== 产测相关常量定义 ======================
#define FACTORY_TEST_RSSI_THRESHOLD (-70) // WiFi信号强度阈值 -70dBm
#define WIFI_SCAN_AP_LIMIT 64 // 最大扫描AP数量
#define WIFI_MAX_SSID_LEN 33 // SSID最大长度
#define WIFI_MAC_LEN 6 // MAC地址长度
#define WIFI_STA_SAMPLE_LOG "[FACTORY]" // 日志前缀
//====================== 产测WiFi状态枚举 ======================
enum {
WIFI_STA_SAMPLE_INIT = 0, // 初始态
WIFI_STA_SAMPLE_SCANING, // 扫描中
WIFI_STA_SAMPLE_SCAN_DONE, // 扫描完成
WIFI_STA_SAMPLE_FOUND_TARGET, // 匹配到目标AP
} wifi_state_enum;
//====================== 产测相关变量 ======================
static bool g_factory_test_running = false;
static int g_factory_test_step = 0;
static uint32_t g_factory_test_start_time = 0;
static uint8_t g_wifi_state = WIFI_STA_SAMPLE_INIT;
//====================== 配网模式函数 ======================
//====================== WiFi事件回调函数 ======================
static void wifi_scan_state_changed(int32_t state, int32_t size) {
UNUSED(state);
UNUSED(size);
e_printf("%s WiFi扫描完成!\r\n", WIFI_STA_SAMPLE_LOG);
g_wifi_state = WIFI_STA_SAMPLE_SCAN_DONE;
}
static void wifi_connection_changed(int32_t state, const wifi_linked_info_stru *info, int32_t reason_code) {
UNUSED(info);
UNUSED(reason_code);
// 产测模式下不需要连接,只需要扫描
}
static wifi_event_stru wifi_event_cb = {
.wifi_event_connection_changed = wifi_connection_changed,
.wifi_event_scan_state_changed = wifi_scan_state_changed,
};
//====================== WiFi扫描和产测函数 ======================
// 匹配目标AP并获取信号强度
static int32_t get_match_network_rssi(const char* target_ssid, int32_t* rssi) {
int32_t ret;
uint32_t num = WIFI_SCAN_AP_LIMIT;
bool find_ap = false;
uint8_t bss_index;
// 获取扫描结果
uint32_t scan_len = sizeof(wifi_scan_info_stru) * WIFI_SCAN_AP_LIMIT;
wifi_scan_info_stru *result = osal_kmalloc(scan_len, OSAL_GFP_ATOMIC);
if (result == NULL) {
e_printf("%s 内存分配失败\r\n", WIFI_STA_SAMPLE_LOG);
return -1;
}
memset_s(result, scan_len, 0, scan_len);
ret = wifi_sta_get_scan_info(result, &num);
if (ret != 0) {
e_printf("%s 获取扫描信息失败: %d\r\n", WIFI_STA_SAMPLE_LOG, ret);
osal_kfree(result);
return -1;
}
// 筛选扫描到的WiFi网络查找目标AP
for (bss_index = 0; bss_index < num; bss_index++) {
if (strlen(target_ssid) == strlen(result[bss_index].ssid)) {
if (memcmp(target_ssid, result[bss_index].ssid, strlen(target_ssid)) == 0) {
find_ap = true;
*rssi = result[bss_index].rssi;
e_printf("%s 找到目标AP: %s, 信号强度: %ddBm\r\n",
WIFI_STA_SAMPLE_LOG, target_ssid, *rssi);
break;
}
}
}
osal_kfree(result);
if (!find_ap) {
e_printf("%s 未找到目标AP: %s\r\n", WIFI_STA_SAMPLE_LOG, target_ssid);
return -1;
}
return 0;
}
// WiFi扫描并检查信号强度
static int32_t wifi_scan_and_check(const char* target_ssid, int32_t rssi_threshold) {
int32_t rssi = 0;
g_wifi_state = WIFI_STA_SAMPLE_INIT;
do {
osal_msleep(10);
if (g_wifi_state == WIFI_STA_SAMPLE_INIT) {
e_printf("%s 开始WiFi扫描...\r\n", WIFI_STA_SAMPLE_LOG);
g_wifi_state = WIFI_STA_SAMPLE_SCANING;
// 启动WiFi扫描
if (wifi_sta_scan() != 0) {
e_printf("%s WiFi扫描启动失败\r\n", WIFI_STA_SAMPLE_LOG);
g_wifi_state = WIFI_STA_SAMPLE_INIT;
continue;
}
} else if (g_wifi_state == WIFI_STA_SAMPLE_SCAN_DONE) {
// 获取目标网络的信号强度
if (get_match_network_rssi(target_ssid, &rssi) != 0) {
e_printf("%s 未找到目标AP: %s\r\n", WIFI_STA_SAMPLE_LOG, target_ssid);
return -1;
}
break;
}
} while (1);
// 检查信号强度阈值
if (rssi_threshold == 0) {
// 只检查是否找到目标AP不检查信号强度
return 0;
}
e_printf("%s 信号强度测试: 期望 >= %ddBm, 实际 %ddBm\r\n",
WIFI_STA_SAMPLE_LOG, rssi_threshold, rssi);
if (rssi >= rssi_threshold) {
return 0; // 测试通过
}
return -1; // 信号强度不足
}
// 初始化WiFi产测环境
static int factory_test_wifi_init(void) {
// 注册WiFi事件回调
if (wifi_register_event_cb(&wifi_event_cb) != 0) {
e_printf("%s WiFi事件回调注册失败\r\n", WIFI_STA_SAMPLE_LOG);
return -1;
}
// 等待WiFi初始化完成
int timeout = 100; // 10秒超时
while (wifi_is_wifi_inited() == 0 && timeout-- > 0) {
msleep(100);
}
if (timeout <= 0) {
e_printf("%s WiFi初始化超时\r\n", WIFI_STA_SAMPLE_LOG);
goto lab_err;
}
// 创建STA接口
if (wifi_sta_enable() != 0) {
e_printf("%s WiFi STA启动失败\r\n", WIFI_STA_SAMPLE_LOG);
goto lab_err;
}
e_printf("%s WiFi产测环境初始化完成\r\n", WIFI_STA_SAMPLE_LOG);
return 0;
lab_err:
wifi_unregister_event_cb(&wifi_event_cb);
return -1;
}
// 进入配网模式
void enter_config_mode(void) {
if (g_device_state.mode == MODE_CONFIG) {
if (g_runtime_state.mode == MODE_CONFIG) {
e_printf("[CONFIG] 已在配网模式中\r\n");
return;
}
e_printf("[CONFIG] 进入配网模式\r\n");
start_hilink_ble_net_config(CONFIG_TIMEOUT_MS/1000);
// 更新设备模式
set_device_mode(MODE_CONFIG);
// 记录配网开始时间
g_config_blink_start_time = hfsys_get_time();
// 面板背光快闪1秒表示进入配网模式
panel_led_blink();
@ -57,57 +212,17 @@ void enter_config_mode(void) {
osal_kthread_set_priority(g_config_task_handle, TASK_PRIORITY_NORM);
}
// 创建配网超时定时器
if (!g_config_timeout_timer) {
int ret = uapi_timer_create(TIMER_INDEX_1, &g_config_timeout_timer);
if (ret != ERRCODE_SUCC) {
e_printf("[CONFIG] 创建配网超时定时器失败: %d\r\n", ret);
}
}
if (g_config_timeout_timer) {
uapi_timer_start(g_config_timeout_timer,
CONFIG_TIMEOUT_MS * 1000,
config_timeout_timer_callback,
0);
}
// 创建闪烁定时器
if (!g_config_blink_timer) {
int ret = uapi_timer_create(TIMER_INDEX_2, &g_config_blink_timer);
if (ret != ERRCODE_SUCC) {
e_printf("[CONFIG] 创建配网闪烁定时器失败: %d\r\n", ret);
}
}
if (g_config_blink_timer) {
uint32_t blink_period = 1000000 / (LED_BLINK_FREQ_HZ * 2); // 半周期(微秒)
uapi_timer_start(g_config_blink_timer,
blink_period,
config_blink_timer_callback,
0);
}
e_printf("[CONFIG] 配网模式已开启,超时时间: %d分钟\r\n", CONFIG_TIMEOUT_MS / 60000);
}
// 退出配网模式
void exit_config_mode(void) {
if (g_device_state.mode != MODE_CONFIG) {
if (g_runtime_state.mode != MODE_CONFIG) {
return;
}
e_printf("[CONFIG] 退出配网模式\r\n");
// 停止定时器
if (g_config_timeout_timer) {
uapi_timer_stop(g_config_timeout_timer);
}
if (g_config_blink_timer) {
uapi_timer_stop(g_config_blink_timer);
}
// 终止配网任务
if (g_config_task_handle) {
osal_kthread_destroy(g_config_task_handle, 1);
@ -116,19 +231,17 @@ void exit_config_mode(void) {
// 恢复正常LED状态
for (int i = 0; i < SWITCH_COUNT; i++) {
set_led_output(i, g_device_state.switches[i].led_state ? LED_WHITE : LED_YELLOW);
set_led_output(i, g_persistent_state.switches[i].led_state ? LED_WHITE : LED_YELLOW);
}
// 恢复面板背光状态
set_panel_led(g_device_state.panel_led ? PANEL_LED_ON : PANEL_LED_OFF);
set_panel_led(g_persistent_state.panel_led ? PANEL_LED_ON : PANEL_LED_OFF);
// 更新设备模式
set_device_mode(MODE_NORMAL);
// 重置配网相关变量
g_config_key_id = -1;
g_config_led_blink_state = false;
g_panel_led_blink_state = false;
e_printf("[CONFIG] 已退出配网模式\r\n");
}
@ -138,48 +251,67 @@ int config_mode_task(void *arg) {
(void)arg;
e_printf("[CONFIG] 配网任务开始\r\n");
// 记录配网开始时间
g_runtime_state.config_start_time = hfsys_get_time();
while (g_device_state.mode == MODE_CONFIG && !osal_kthread_should_stop()) {
// 检查是否有产测热点
if (check_factory_test_wifi()) {
e_printf("[CONFIG] 检测到产测热点,进入产测模式\r\n");
exit_config_mode();
enter_factory_test_mode();
// 只有在首次启动时才检查产测热点
if (g_persistent_state.is_first_boot && check_factory_test_wifi()) {
e_printf("[CONFIG] 检测到产测热点且为首次启动,进入产测模式\r\n");
exit_config_mode();
enter_factory_test_mode();
return 0;
}
uint32_t config_start_time = g_runtime_state.config_start_time;
bool led_blink_state = false;
uint32_t last_blink_time = 0;
const uint32_t blink_interval = 500; // 500ms闪烁间隔 (1Hz)
while (g_runtime_state.mode == MODE_CONFIG && !osal_kthread_should_stop()) {
uint32_t current_time = hfsys_get_time();
uint32_t elapsed_time = current_time - config_start_time;
// 检查是否超时 (10分钟)
if (elapsed_time >= CONFIG_TIMEOUT_MS) {
e_printf("[CONFIG] 配网超时,退出配网模式\r\n");
break;
}
// 每秒检查一次
osal_msleep(1000);
}
e_printf("[CONFIG] 配网任务结束\r\n");
return 0;
}
// 配网LED闪烁
void config_led_blink(void) {
uint32_t current_time = hfsys_get_time();
uint32_t elapsed_time = current_time - g_config_blink_start_time;
// 前3分钟闪烁后7分钟常亮
if (elapsed_time < CONFIG_BLINK_MS) {
// 只有触发配网的按键LED闪烁其他LED保持常亮
for (int i = 0; i < SWITCH_COUNT; i++) {
if (i == g_config_key_id) {
// 触发配网的按键LED闪烁
g_config_led_blink_state = !g_config_led_blink_state;
set_led_output(i, g_config_led_blink_state ? LED_WHITE : LED_YELLOW);
} else {
// 其他按键LED保持常亮
// LED控制逻辑
if (elapsed_time < CONFIG_BLINK_MS) { // 前3分钟闪烁
// 检查是否需要切换LED状态
if (current_time - last_blink_time >= blink_interval) {
led_blink_state = !led_blink_state;
last_blink_time = current_time;
// 只有触发配网的按键LED闪烁其他LED保持黄灯常亮
for (int i = 0; i < SWITCH_COUNT; i++) {
if (i == g_config_key_id) {
// 触发配网的按键LED闪烁
set_led_output(i, led_blink_state ? LED_WHITE : LED_YELLOW);
} else {
// 其他按键LED保持黄灯常亮
set_led_output(i, LED_YELLOW);
}
}
}
} else { // 后7分钟常亮
// 所有LED保持黄灯常亮
for (int i = 0; i < SWITCH_COUNT; i++) {
set_led_output(i, LED_YELLOW);
}
}
} else {
// 超过3分钟后所有LED保持常亮
for (int i = 0; i < SWITCH_COUNT; i++) {
set_led_output(i, LED_YELLOW);
}
// 每100ms检查一次
osal_msleep(100);
}
e_printf("[CONFIG] 配网任务结束\r\n");
g_config_task_handle = NULL;
// 退出配网模式
exit_config_mode();
return 0;
}
// 面板背光快闪
@ -193,7 +325,7 @@ void panel_led_blink(void) {
}
// 恢复原状态
set_panel_led(g_device_state.panel_led ? PANEL_LED_ON : PANEL_LED_OFF);
set_panel_led(g_persistent_state.panel_led ? PANEL_LED_ON : PANEL_LED_OFF);
}
//====================== 产测模式函数 ======================
@ -299,34 +431,30 @@ void factory_test_sequence(void) {
// 检查产测热点
bool check_factory_test_wifi(void) {
// 简化实现直接返回false实际应该扫描WiFi热点
// TODO: 实际实现需要调用WiFi扫描接口查找 "ShuorongSelfTest" 热点
// 使用WiFi扫描功能检测产测热点 "ShuorongSelfTest"
// 并校验信号强度 >= -70dBm
return false; // 默认未找到产测热点
}
//====================== 定时器回调函数 ======================
// 配网超时定时器回调
void config_timeout_timer_callback(uintptr_t data) {
(void)data;
static bool wifi_initialized = false;
e_printf("[CONFIG] 配网超时,退出配网模式\r\n");
// 超时退出配网模式
exit_config_mode();
}
// 配网闪烁定时器回调
void config_blink_timer_callback(uintptr_t data) {
(void)data;
uint32_t blink_period = 1000000 / (LED_BLINK_FREQ_HZ * 2); // 半周期(微秒)
// 执行闪烁操作
config_led_blink();
if (g_config_blink_timer) {
uapi_timer_start(g_config_blink_timer,
blink_period,
config_blink_timer_callback,
0);
// 初始化WiFi环境只初始化一次
if (!wifi_initialized) {
if (factory_test_wifi_init() != 0) {
e_printf("%s WiFi环境初始化失败\r\n", WIFI_STA_SAMPLE_LOG);
return false;
}
wifi_initialized = true;
// 等待WiFi稳定
// osal_msleep(1000);
}
}
// 扫描并检查目标热点
if (wifi_scan_and_check(FACTORY_TEST_SSID, FACTORY_TEST_RSSI_THRESHOLD) == 0) {
e_printf("%s 产测热点检测通过: %s, 信号强度满足要求\r\n",
WIFI_STA_SAMPLE_LOG, FACTORY_TEST_SSID);
return true;
}
return false; // 未找到合格的产测热点
}

View File

@ -15,68 +15,73 @@ static int handle_put_switch_common(int switch_id, const char* svc_id,
// 处理设备上线事件
void handle_device_online(void) {
e_printf("[HILINK] 设备上线\r\n");
e_printf("设备上线\r\n");
// 更新设备绑定状态
g_device_state.is_bound = true;
g_persistent_state.is_bound = true;
// 如果是首次启动,标记为非首次启动(首次绑定完成)
if (g_persistent_state.is_first_boot) {
g_persistent_state.is_first_boot = false;
e_printf("首次绑定完成,标记为非首次启动\r\n");
}
// 退出配网模式
if (g_device_state.mode == MODE_CONFIG) {
if (g_runtime_state.mode == MODE_CONFIG) {
exit_config_mode();
}
// 设备上线时禁用蓝牙模式,启用云端模式
extern void switch_panel_ble_disable(void);
switch_panel_ble_disable();
// 同步所有状态到云端
sync_cloud_state();
// 保存状态
save_device_state();
save_persistent_state();
}
// 处理设备下线事件
void handle_device_offline(void) {
e_printf("[HILINK] 设备下线\r\n");
e_printf("设备下线\r\n");
// 设备下线时启用蓝牙模式,支持本地控制
extern void switch_panel_ble_enable(void);
switch_panel_ble_enable();
// 设备下线时保持现有状态,不做特殊处理
}
// 处理设备解绑事件
void handle_device_unbind(void) {
e_printf("[HILINK] 设备解绑\r\n");
e_printf("设备解绑\r\n");
// 更新设备绑定状态
g_device_state.is_bound = false;
g_device_state.mode = MODE_UNBIND;
g_persistent_state.is_bound = false;
g_runtime_state.mode = MODE_UNBIND;
// 重置为出厂默认状态
reset_device_state();
g_device_state.is_bound = false; // 保持未绑定状态
reset_persistent_state();
g_persistent_state.is_bound = false; // 保持未绑定状态
// 同步硬件状态
sync_hardware_state();
// 保存状态
save_device_state();
save_persistent_state();
e_printf("[HILINK] 设备已重置为出厂默认状态\r\n");
e_printf("设备已重置为出厂默认状态\r\n");
}
// 同步所有状态到云端
void sync_cloud_state(void) {
e_printf("[HILINK] 开始同步状态到云端\r\n");
e_printf("开始同步状态到云端\r\n");
// 上报总开关状态
extern int fast_report(const char* svc_id);
fast_report("switch");
// 使用批量异步上报所有开关状态
fast_report_all_switches_async();
// 上报所有子开关状态
for (int i = 0; i < SWITCH_COUNT; i++) {
char svc_id[16] = {0};
snprintf(svc_id, sizeof(svc_id), "switch%d", i + 1);
fast_report(svc_id);
// osDelay(pdMS_TO_TICKS(100)); // 防止上报过快
}
e_printf("[HILINK] 状态同步完成\r\n");
e_printf("状态同步完成\r\n");
}
//====================== HiLink 服务处理函数 ======================
@ -84,24 +89,20 @@ void sync_cloud_state(void) {
// 处理总开关PUT命令
int handle_put_switch(const char* svc_id, const char* payload, unsigned int len) {
if (!svc_id || !payload) {
e_printf("[HILINK] handle_put_switch 参数无效\r\n");
e_printf("handle_put_switch 参数无效\r\n");
return -1;
}
e_printf("[HILINK] 收到总开关控制命令: %s\r\n", payload);
e_printf("收到总开关控制命令: %s\r\n", payload);
cJSON* json = cJSON_Parse(payload);
if (!json) {
e_printf("[HILINK] JSON解析失败\r\n");
e_printf("JSON解析失败\r\n");
return -1;
}
cJSON* on_item = cJSON_GetObjectItem(json, "on");
if (on_item && cJSON_IsBool(on_item)) {
bool state = cJSON_IsTrue(on_item);
update_master_switch(state);
e_printf("[HILINK] 总开关设置为: %s\r\n", state ? "" : "");
}
update_master_switch(cJSON_GetNumberValue(on_item));
cJSON_Delete(json);
return 0;
@ -120,10 +121,10 @@ int handle_get_switch(const char* svc_id, const char* in, unsigned int in_len,
return -1;
}
*out_len = snprintf(*out, *out_len, "{\"on\":%s}",
g_device_state.master_switch ? "true" : "false");
*out_len = snprintf(*out, *out_len, "{\"on\":%d}",
g_persistent_state.master_switch ? 1 : 0);
e_printf("[HILINK] 返回总开关状态: %s\r\n", *out);
e_printf("返回总开关状态: %s\r\n", *out);
return 0;
}
@ -177,32 +178,25 @@ int handle_get_switch4(const char* svc_id, const char* in, unsigned int in_len,
static int handle_put_switch_common(int switch_id, const char* svc_id,
const char* payload, unsigned int len) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT || !svc_id || !payload) {
e_printf("[HILINK] handle_put_switch%d 参数无效\r\n", switch_id + 1);
e_printf("handle_put_switch%d 参数无效\r\n", switch_id + 1);
return -1;
}
e_printf("[HILINK] 收到开关%d控制命令: %s\r\n", switch_id + 1, payload);
e_printf("收到开关%d控制命令: %s\r\n", switch_id + 1, payload);
cJSON* json = cJSON_Parse(payload);
if (!json) {
e_printf("[HILINK] JSON解析失败\r\n");
e_printf("JSON解析失败\r\n");
return -1;
}
cJSON* on_item = cJSON_GetObjectItem(json, "on");
if (on_item && cJSON_IsBool(on_item)) {
bool state = cJSON_IsTrue(on_item);
update_switch_state(switch_id, state);
e_printf("[HILINK] 开关%d设置为: %s\r\n",
switch_id + 1, state ? "" : "");
if (on_item) {
update_switch_state(switch_id, cJSON_GetNumberValue(on_item));
}
// 检查是否有name字段预留功能
cJSON* name_item = cJSON_GetObjectItem(json, "name");
if (name_item && cJSON_IsString(name_item)) {
e_printf("[HILINK] 开关%d名称: %s\r\n",
switch_id + 1, cJSON_GetStringValue(name_item));
// TODO: 将来可以存储开关名称
if (name_item) {
set_switch_name(switch_id, cJSON_GetStringValue(name_item));
}
cJSON_Delete(json);
@ -223,13 +217,12 @@ static int handle_get_switch_common(int switch_id, const char* svc_id,
return -1;
}
// 返回开关状态和名称
*out_len = snprintf(*out, *out_len,
"{\"on\":%s,\"name\":\"开关%d\"}",
g_device_state.switches[switch_id].switch_on ? "true" : "false",
switch_id + 1);
"{\"on\":%d,\"name\":\"%s\"}",
g_persistent_state.switches[switch_id].switch_on ? 1 : 0,
g_persistent_state.switches[switch_id].name);
e_printf("[HILINK] 返回开关%d状态: %s\r\n", switch_id + 1, *out);
e_printf("返回开关%d状态: %s\r\n", switch_id + 1, *out);
return 0;
}
@ -237,24 +230,10 @@ static int handle_get_switch_common(int switch_id, const char* svc_id,
// 检查设备是否在线
bool is_device_online(void) {
return g_device_state.is_bound;
return g_persistent_state.is_bound;
}
// 获取设备当前模式
system_mode_t get_current_mode(void) {
return g_device_state.mode;
}
// 设置设备工作模式
void set_device_mode(system_mode_t mode) {
if (g_device_state.mode != mode) {
system_mode_t old_mode = g_device_state.mode;
g_device_state.mode = mode;
e_printf("[MODE] 设备模式切换: %s -> %s\r\n",
get_mode_string(old_mode), get_mode_string(mode));
// 保存模式变更
save_device_state();
}
return g_runtime_state.mode;
}

View File

@ -19,35 +19,35 @@ static key_timer_param_t g_timer_params[SWITCH_COUNT];
// 更新单个开关状态
void update_switch_state(int switch_id, bool state) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT) {
e_printf("[SWITCH] 无效的开关ID: %d\r\n", switch_id);
e_printf("无效的开关ID: %d\r\n", switch_id);
return;
}
// 检查总开关是否允许操作
if (!g_device_state.master_switch && state) {
e_printf("[SWITCH] 总开关关闭,不允许开启开关%d\r\n", switch_id + 1);
if (!g_persistent_state.master_switch && state) {
e_printf("总开关关闭,不允许开启开关%d\r\n", switch_id + 1);
return;
}
// 更新开关状态
if (g_device_state.switches[switch_id].switch_on != state) {
g_device_state.switches[switch_id].switch_on = state;
if (g_persistent_state.switches[switch_id].switch_on != state) {
g_persistent_state.switches[switch_id].switch_on = state;
// 更新LED指示灯(开关开启时LED白灯关闭时LED黄灯)
g_device_state.switches[switch_id].led_state = state;
g_persistent_state.switches[switch_id].led_state = state;
// 同步硬件状态
set_switch_output(switch_id, state);
set_led_output(switch_id, state ? LED_WHITE : LED_YELLOW);
e_printf("[SWITCH] 开关%d 状态更新: %s\r\n",
e_printf("开关%d 状态更新: %s\r\n",
switch_id + 1, state ? "" : "");
// 立即保存状态
save_device_state();
save_persistent_state();
// 上报状态给云端
if (g_device_state.is_bound) {
if (g_persistent_state.is_bound) {
fast_report_switch(switch_id);
}
}
@ -55,19 +55,19 @@ void update_switch_state(int switch_id, bool state) {
// 更新总开关状态
void update_master_switch(bool state) {
if (g_device_state.master_switch != state) {
g_device_state.master_switch = state;
if (g_persistent_state.master_switch != state) {
g_persistent_state.master_switch = state;
e_printf("[SWITCH] 总开关状态更新: %s\r\n", state ? "" : "");
e_printf("总开关状态更新: %s\r\n", state ? "" : "");
// 应用总开关控制逻辑
apply_master_switch_control();
// 立即保存状态
save_device_state();
save_persistent_state();
// 上报状态给云端
if (g_device_state.is_bound) {
if (g_persistent_state.is_bound) {
fast_report_master_switch();
}
}
@ -75,18 +75,42 @@ void update_master_switch(bool state) {
// 应用总开关控制逻辑
void apply_master_switch_control(void) {
for (int i = 0; i < SWITCH_COUNT; i++) {
if (!g_device_state.master_switch) {
// 总开关关闭时,关闭所有开关但保持LED状态
set_switch_output(i, false);
} else {
// 总开关开启时,恢复各开关的原状态
set_switch_output(i, g_device_state.switches[i].switch_on);
}
if (!g_persistent_state.master_switch) {
// 总开关关闭时,强制关闭所有开关
e_printf("总开关关闭,强制关闭所有子开关\r\n");
// LED状态保持不变始终显示实际的开关状态
set_led_output(i, g_device_state.switches[i].led_state ? LED_WHITE : LED_YELLOW);
for (int i = 0; i < SWITCH_COUNT; i++) {
// 如果子开关之前是开着的,需要同步状态
if (g_persistent_state.switches[i].switch_on) {
g_persistent_state.switches[i].switch_on = false;
g_persistent_state.switches[i].led_state = false;
e_printf("强制关闭子开关%d\r\n", i + 1);
}
// 更新硬件状态
set_switch_output(i, false);
set_led_output(i, LED_YELLOW);
}
} else {
// 总开关开启时,恢复各开关的原状态(不改变子开关状态)
// e_printf("总开关开启,恢复各子开关原有状态\r\n");
// for (int i = 0; i < SWITCH_COUNT; i++) {
// // 硬件状态跟随子开关的实际状态
// set_switch_output(i, g_persistent_state.switches[i].switch_on);
// set_led_output(i, g_persistent_state.switches[i].led_state ? LED_WHITE : LED_YELLOW);
// }
}
// 立即保存状态
save_persistent_state();
// 同步所有子开关状态到云端
if (g_persistent_state.is_bound) {
fast_report_all_switches_async();
}
e_printf("所有子开关状态已同步\r\n");
}
//====================== 按键检测与处理 ======================
@ -149,7 +173,7 @@ int key_scan_task(void *arg) {
}
g_key_states[i] = current_state;
g_device_state.switches[i].physical_key = current_state;
g_runtime_state.switches[i].physical_key = current_state;
}
// 检查是否达到长按时间(在按下期间监测)
@ -178,19 +202,19 @@ void handle_key_press(int key_id) {
e_printf("[KEY] 处理按键%d 短按事件\r\n", key_id + 1);
// 在配网模式下,忽略短按事件
if (g_device_state.mode == MODE_CONFIG) {
if (g_runtime_state.mode == MODE_CONFIG) {
e_printf("[KEY] 配网模式下,忽略短按事件\r\n");
return;
}
// 在产测模式下,忽略短按事件
if (g_device_state.mode == MODE_FACTORY_TEST) {
if (g_runtime_state.mode == MODE_FACTORY_TEST) {
e_printf("[KEY] 产测模式下,忽略短按事件\r\n");
return;
}
// 正常模式下切换开关状态
bool current_state = g_device_state.switches[key_id].switch_on;
bool current_state = g_persistent_state.switches[key_id].switch_on;
update_switch_state(key_id, !current_state);
}
@ -204,13 +228,19 @@ void handle_key_long_press(int key_id) {
// 只有第一个按键支持长按进入配网模式
if (key_id == 0) {
e_printf("[KEY] 长按第一个按键,进入配网模式\r\n");
e_printf("[KEY] 长按第一个按键,检查配网条件\r\n");
// 只有在正常模式下才能进入配网模式
if (g_device_state.mode == MODE_NORMAL) {
// 只有在正常模式下且设备未绑定时才能进入配网模式
if (g_runtime_state.mode == MODE_NORMAL && !g_persistent_state.is_bound) {
extern int g_config_key_id;
g_config_key_id = key_id; // 设置触发配网的按键ID
enter_config_mode();
} else {
e_printf("[KEY] 非正常模式,不能进入配网模式\r\n");
if (g_persistent_state.is_bound) {
e_printf("[KEY] 设备已绑定,不能进入配网模式\r\n");
} else {
e_printf("[KEY] 非正常模式,不能进入配网模式\r\n");
}
}
} else {
e_printf("[KEY] 非第一个按键的长按,忽略\r\n");
@ -226,15 +256,19 @@ int key_system_init(void) {
ret = uapi_timer_init();
if (ret != ERRCODE_SUCC) {
e_printf("[KEY] 定时器初始化失败: %d\r\n", ret);
// return HF_FAIL;
}
ret = uapi_timer_adapter(TIMER_INDEX_1, TIMER_1_IRQN, 1);
if (ret != 0) {
e_printf("定时器适配器初始化失败\r\n");
return HF_FAIL;
}
// 初始化定时器参数
for (int i = 0; i < SWITCH_COUNT; i++) {
g_timer_params[i].key_id = i;
// 创建防抖定时器
ret = uapi_timer_create(TIMER_INDEX_0, &g_key_debounce_timer[i]);
ret = uapi_timer_create(TIMER_INDEX_1, &g_key_debounce_timer[i]);
if (ret != ERRCODE_SUCC) {
e_printf("[KEY] 创建按键%d防抖定时器失败: %d\r\n", i + 1, ret);
return HF_FAIL;
@ -242,7 +276,7 @@ int key_system_init(void) {
// 初始化按键状态
g_key_states[i] = get_key_input(i);
g_device_state.switches[i].physical_key = g_key_states[i];
g_runtime_state.switches[i].physical_key = g_key_states[i];
}
// 创建按键扫描任务
@ -256,7 +290,7 @@ int key_system_init(void) {
}
// 设置任务优先级
ret = osal_kthread_set_priority(g_key_scan_task_handle, TASK_PRIORITY_NORM);
ret = osal_kthread_set_priority(g_key_scan_task_handle, TASK_PRIORITY_HIGH);
if (ret != 0) {
e_printf("[KEY] 设置按键扫描任务优先级失败: %d\r\n", ret);
}
@ -265,28 +299,12 @@ int key_system_init(void) {
return HF_SUCCESS;
}
//====================== 快速上报函数 ======================
// 快速上报单个开关状态
// 快速上报单个开关状态(兼容旧接口,内部使用异步上报)
void fast_report_switch(int switch_id) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT) {
return;
}
char svc_id[16] = {0};
snprintf(svc_id, sizeof(svc_id), "switch%d", switch_id + 1);
// 使用已有的fast_report函数
extern int fast_report(const char* svc_id);
fast_report(svc_id);
e_printf("[REPORT] 已上报开关%d状态\r\n", switch_id + 1);
fast_report_switch_async(switch_id);
}
// 快速上报总开关状态
// 快速上报总开关状态(兼容旧接口,内部使用异步上报)
void fast_report_master_switch(void) {
extern int fast_report(const char* svc_id);
fast_report("switch");
e_printf("[REPORT] 已上报总开关状态\r\n");
fast_report_master_switch_async();
}

View File

@ -7,29 +7,270 @@
#include "switch_panel.h"
//====================== 全局变量 ======================
device_state_t g_device_state = {
device_persistent_state_t g_persistent_state = {
.is_first_boot = true,
.is_bound = false,
.master_switch = false,
.panel_led = true,
.mode = MODE_NORMAL,
.switches = {
{.switch_on = false, .led_state = false, .physical_key = true},
{.switch_on = false, .led_state = false, .physical_key = true},
{.switch_on = false, .led_state = false, .physical_key = true},
{.switch_on = false, .led_state = false, .physical_key = true}
{.switch_on = false, .led_state = false},
{.switch_on = false, .led_state = false},
{.switch_on = false, .led_state = false},
{.switch_on = false, .led_state = false}
},
.magic = DEVICE_DATA_MAGIC,
.version = DEVICE_DATA_VERSION
};
device_runtime_state_t g_runtime_state = {
.mode = MODE_NORMAL,
.ble_mode_enabled = false,
.config_start_time = 0,
.config_key_id = -1,
.config_led_blink_state = false,
.factory_test_running = false,
.last_save_time = 0,
.switches = {
{.physical_key = true, .press_time = 0, .debounce_flag = false, .long_press_handled = false},
{.physical_key = true, .press_time = 0, .debounce_flag = false, .long_press_handled = false},
{.physical_key = true, .press_time = 0, .debounce_flag = false, .long_press_handled = false},
{.physical_key = true, .press_time = 0, .debounce_flag = false, .long_press_handled = false}
}
};
timer_handle_t g_key_debounce_timer[SWITCH_COUNT] = {0};
timer_handle_t g_config_timeout_timer = 0;
timer_handle_t g_config_blink_timer = 0;
// 配网定时器变量已移除,配网逻辑简化
osal_task *g_key_scan_task_handle = NULL;
osal_task *g_config_task_handle = NULL;
osal_task *g_save_task_handle = NULL; // 异步保存任务句柄
osal_task *g_report_task_handle = NULL; // 异步上报任务句柄
static bool g_initialized = false;
static uint32_t g_config_start_time = 0;
static bool g_config_led_state = false;
//====================== 异步保存系统 ======================
#include "osal_mutex.h"
#include "osal_semaphore.h"
static osal_mutex g_save_mutex; // 保护持久化状态的互斥锁
static osal_semaphore g_save_semaphore; // 触发保存的信号量
static bool g_save_system_running = false; // 异步保存系统是否运行中
static bool g_save_mutex_initialized = false; // 互斥锁是否已初始化
static bool g_save_sem_initialized = false; // 信号量是否已初始化
//====================== 异步上报系统实现 ======================
#include "osal_semaphore.h"
#include "osal_mutex.h"
static osal_semaphore g_report_semaphore; // 触发上报的信号量
static osal_mutex g_report_mutex; // 保护上报掩码的互斥锁
static volatile uint8_t g_report_mask = 0; // 待上报的服务ID位掩码
static bool g_report_system_running = false; // 异步上报系统是否运行中
static bool g_report_sem_initialized = false; // 信号量是否已初始化
static bool g_report_mutex_initialized = false; // 互斥锁是否已初始化
// 异步上报任务
int async_report_task(void *arg) {
(void)arg;
e_printf("异步上报任务启动\r\n");
// 引用外部的fast_report函数
extern int fast_report(const char* svc_id);
while (g_report_system_running && !osal_kthread_should_stop()) {
// 等待上报信号量
if (osal_sem_down(&g_report_semaphore) == OSAL_SUCCESS) {
if (!g_report_system_running) {
break; // 系统关闭
}
// 获取当前的上报掩码(使用互斥锁保护)
uint8_t current_mask = 0;
if (g_report_mutex_initialized && osal_mutex_lock(&g_report_mutex) == OSAL_SUCCESS) {
current_mask = g_report_mask;
g_report_mask = 0; // 清零掩码
osal_mutex_unlock(&g_report_mutex);
} else {
current_mask = g_report_mask;
g_report_mask = 0;
}
if (current_mask == 0) {
continue; // 无上报任务
}
e_printf("开始异步上报,掩码: 0x%02X\r\n", current_mask);
// 上报总开关
if (current_mask & REPORT_SWITCH_MASK) {
fast_report("switch");
e_printf("上报总开关状态\r\n");
osal_msleep(50); // 防止上报过快
}
// 上报各个子开关
for (int i = 0; i < SWITCH_COUNT; i++) {
uint8_t switch_mask = (REPORT_SWITCH1_MASK << i);
if (current_mask & switch_mask) {
char svc_id[16] = {0};
snprintf(svc_id, sizeof(svc_id), "switch%d", i + 1);
fast_report(svc_id);
e_printf("上报开关%d状态\r\n", i + 1);
osal_msleep(50); // 防止上报过快
}
}
e_printf("异步上报完成\r\n");
}
}
e_printf("异步上报任务退出\r\n");
return 0;
}
// 初始化异步上报系统
int report_system_init(void) {
// 初始化互斥锁
if (osal_mutex_init(&g_report_mutex) != OSAL_SUCCESS) {
e_printf("初始化上报互斥锁失败\r\n");
return HF_FAIL;
}
g_report_mutex_initialized = true;
// 初始化信号量初始值为0
if (osal_sem_init(&g_report_semaphore, 0) != OSAL_SUCCESS) {
e_printf("初始化上报信号量失败\r\n");
osal_mutex_destroy(&g_report_mutex);
g_report_mutex_initialized = false;
return HF_FAIL;
}
g_report_sem_initialized = true;
// 启动异步上报任务
g_report_system_running = true;
g_report_task_handle = osal_kthread_create((osal_kthread_handler)async_report_task,
NULL,
"report_task",
TASK_STACK_SIZE);
if (g_report_task_handle == NULL) {
e_printf("创建异步上报任务失败\r\n");
g_report_system_running = false;
if (g_report_sem_initialized) {
osal_sem_destroy(&g_report_semaphore);
g_report_sem_initialized = false;
}
if (g_report_mutex_initialized) {
osal_mutex_destroy(&g_report_mutex);
g_report_mutex_initialized = false;
}
return HF_FAIL;
}
// 设置任务优先级为低优先级,避免影响实时性
osal_kthread_set_priority(g_report_task_handle, TASK_PRIORITY_LOW);
e_printf("异步上报系统初始化成功\r\n");
return HF_SUCCESS;
}
// 清理异步上报系统
void report_system_deinit(void) {
e_printf("清理异步上报系统\r\n");
// 停止上报系统
g_report_system_running = false;
// 唤醒上报任务使其退出
if (g_report_sem_initialized) {
osal_sem_up(&g_report_semaphore);
}
// 等待任务退出
if (g_report_task_handle) {
osal_kthread_destroy(g_report_task_handle, 1);
g_report_task_handle = NULL;
}
// 清理同步原语
if (g_report_sem_initialized) {
osal_sem_destroy(&g_report_semaphore);
g_report_sem_initialized = false;
}
if (g_report_mutex_initialized) {
osal_mutex_destroy(&g_report_mutex);
g_report_mutex_initialized = false;
}
// 清零上报掩码
g_report_mask = 0;
e_printf("异步上报系统清理完成\r\n");
}
// 触发异步上报
void trigger_async_report(uint8_t report_mask) {
if (!g_report_system_running || !g_report_sem_initialized) {
e_printf("异步上报系统未初始化,使用同步上报\r\n");
// 如果异步系统未初始化,回退到同步上报
extern int fast_report(const char* svc_id);
if (report_mask & REPORT_SWITCH_MASK) {
fast_report("switch");
}
for (int i = 0; i < SWITCH_COUNT; i++) {
if (report_mask & (REPORT_SWITCH1_MASK << i)) {
char svc_id[16] = {0};
snprintf(svc_id, sizeof(svc_id), "switch%d", i + 1);
fast_report(svc_id);
}
}
return;
}
// 使用互斥锁保护更新上报掩码
bool should_signal = false;
if (g_report_mutex_initialized && osal_mutex_lock(&g_report_mutex) == OSAL_SUCCESS) {
uint8_t old_mask = g_report_mask;
g_report_mask |= report_mask;
should_signal = (old_mask == 0);
osal_mutex_unlock(&g_report_mutex);
} else {
uint8_t old_mask = g_report_mask;
g_report_mask |= report_mask;
should_signal = (old_mask == 0);
}
// 如果是新的上报请求,唤醒上报任务
if (should_signal) {
osal_sem_up(&g_report_semaphore);
e_printf("已触发异步上报,掩码: 0x%02X\r\n", report_mask);
} else {
e_printf("合并上报请求,掩码: 0x%02X\r\n", g_report_mask);
}
}
// 异步上报单个开关
void fast_report_switch_async(int switch_id) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT) {
return;
}
uint8_t switch_mask = (REPORT_SWITCH1_MASK << switch_id);
trigger_async_report(switch_mask);
}
// 异步上报总开关
void fast_report_master_switch_async(void) {
trigger_async_report(REPORT_SWITCH_MASK);
}
// 异步上报所有开关
void fast_report_all_switches_async(void) {
trigger_async_report(REPORT_ALL_MASK);
}
//====================== 存储管理函数 ======================
// 计算数据校验码
@ -48,8 +289,9 @@ static uint8_t calculate_checksum(const uint8_t* data, int len)
static bool read_device_data_from_addr(uint32_t addr, uint8_t* data, uint32_t len)
{
int total_size = sizeof(device_data_t) + len;
uint8_t checksum = 0;
device_data_t *data_all = malloc(total_size);
uint8_t checksum;
if (data_all == NULL) {
e_printf("内存分配失败\r\n");
return false;
@ -88,7 +330,7 @@ lab_err:
// 写入数据到指定地址
static bool write_device_data_to_addr(uint32_t addr, uint8_t* data, uint32_t len)
{
int ret = hfuflash_erase_page(addr, 1);
uint32_t ret = hfuflash_erase_page(addr, 1);
if (ret != HF_SUCCESS) {
e_printf("擦除地址0x%x的Flash页失败错误码%d\r\n", addr, ret);
return false;
@ -99,7 +341,8 @@ static bool write_device_data_to_addr(uint32_t addr, uint8_t* data, uint32_t len
e_printf("内存分配失败\r\n");
return false;
}
memset(data_all, 0, total_size);
memset_s(data_all, total_size, 0, total_size);
data_all->data_len = len;
memcpy_s(data_all->data, len, data, len);
data_all->checksum = calculate_checksum(data_all->data, data_all->data_len);
data_all->magic = DEVICE_DATA_MAGIC;
@ -115,10 +358,10 @@ static bool write_device_data_to_addr(uint32_t addr, uint8_t* data, uint32_t len
}
// 从 Flash 加载设备状态
int load_device_state(void) {
// 从 Flash 加载持久化状态
int load_persistent_state(void) {
int ret = 0;
device_state_t state;
device_persistent_state_t state;
bool valid = false;
// 尝试读取主数据区
@ -131,96 +374,252 @@ int load_device_state(void) {
// 两个存储区都失败,使用默认状态
if (!valid) {
e_printf("[STORAGE] 存储区数据损坏,使用默认状态\r\n");
reset_device_state();
save_device_state();
e_printf("存储区数据损坏,使用默认状态\r\n");
reset_persistent_state();
save_persistent_state();
return 0;
}
// 更新设备控制状态
e_printf("设备状态恢复:\r\n");
e_printf("首次启动: %d => %d\r\n", g_device_state.is_first_boot, state.is_first_boot);
e_printf("配网状态: %d => %d\r\n", g_device_state.is_bound, state.is_bound);
e_printf("总开关: %d => %d\r\n", g_device_state.master_switch, state.master_switch);
e_printf("面板背光: %d => %d\r\n", g_device_state.panel_led, state.panel_led);
e_printf("工作模式: %d => %d\r\n", g_device_state.mode, state.mode);
// 更新持久化状态
e_printf("持久化状态恢复:\r\n");
e_printf("首次启动: %d => %d\r\n", g_persistent_state.is_first_boot, state.is_first_boot);
e_printf("配网状态: %d => %d\r\n", g_persistent_state.is_bound, state.is_bound);
e_printf("总开关: %d => %d\r\n", g_persistent_state.master_switch, state.master_switch);
e_printf("面板背光: %d => %d\r\n", g_persistent_state.panel_led, state.panel_led);
for (int i = 0; i < SWITCH_COUNT; i++) {
e_printf("开关%d: %d => %d, LED%d: %d => %d, 物理按键%d: %d => %d\r\n",
i + 1, g_device_state.switches[i].switch_on, state.switches[i].switch_on,
i + 1, g_device_state.switches[i].led_state, state.switches[i].led_state,
i + 1, g_device_state.switches[i].physical_key, state.switches[i].physical_key);
e_printf("开关%d(%s): %d => %d, LED%d: %d => %d\r\n",
i + 1, state.switches[i].name,
g_persistent_state.switches[i].switch_on, state.switches[i].switch_on,
i + 1, g_persistent_state.switches[i].led_state, state.switches[i].led_state);
}
memcpy(&g_device_state, &state, sizeof(device_state_t));
memcpy(&g_persistent_state, &state, sizeof(device_persistent_state_t));
return 0;
}
// 保存设备状态到 Flash
int save_device_state(void) {
int ret = 0;
static device_state_t state = {};
bool valid = false;
if (state.is_first_boot == g_device_state.is_first_boot &&
state.is_bound == g_device_state.is_bound &&
state.master_switch == g_device_state.master_switch &&
state.panel_led == g_device_state.panel_led &&
state.mode == g_device_state.mode)
{
for (int i = 0; i < SWITCH_COUNT; i++) {
if (state.switches[i].switch_on != g_device_state.switches[i].switch_on
|| state.switches[i].led_state != g_device_state.switches[i].led_state
|| state.switches[i].physical_key != g_device_state.switches[i].physical_key) {
valid = true;
break;
//====================== 异步保存系统实现 ======================
// 异步保存任务
static int save_data_task(void *arg) {
(void)arg;
e_printf("异步保存任务启动\r\n");
while (g_save_system_running && !osal_kthread_should_stop()) {
// 等待保存信号量
if (osal_sem_down(&g_save_semaphore) == OSAL_SUCCESS) {
if (!g_save_system_running) {
break; // 系统关闭
}
// 执行实际的同步保存操作
int ret = save_persistent_state_sync();
if (ret != HF_SUCCESS) {
e_printf("异步保存失败: %d\r\n", ret);
} else {
e_printf("异步保存成功\r\n");
}
}
if (!valid) {
e_printf("[STORAGE] 设备状态未变化,跳过保存\r\n");
return HF_SUCCESS;
}
}
// 准备数据
memcpy(&state, &g_device_state, sizeof(device_state_t));
// 保存到主存储区
ret = write_device_data_to_addr(DEVICE_DATA_FLASH_ADDR, (uint8_t*)&state, sizeof(state));
if (ret != HF_SUCCESS) {
e_printf("[STORAGE] 写入主存储区失败: %d\r\n", ret);
return ret;
}
// 保存到备份区
ret = write_device_data_to_addr(DEVICE_DATA_BACKUP_ADDR, (uint8_t*)&state, sizeof(state));
if (ret != HF_SUCCESS) {
e_printf("[STORAGE] 写入备份区失败: %d\r\n", ret);
e_printf("异步保存任务退出\r\n");
return 0;
}
// 初始化异步保存系统
int save_system_init(void) {
int ret = HF_SUCCESS;
// 初始化互斥锁
if (osal_mutex_init(&g_save_mutex) != OSAL_SUCCESS) {
e_printf("初始化保存互斥锁失败\r\n");
return HF_FAIL;
}
e_printf("[STORAGE] 设备状态保存完成\r\n");
g_save_mutex_initialized = true;
// 初始化信号量初始值为0
if (osal_sem_init(&g_save_semaphore, 0) != OSAL_SUCCESS) {
e_printf("初始化保存信号量失败\r\n");
osal_mutex_destroy(&g_save_mutex);
g_save_mutex_initialized = false;
return HF_FAIL;
}
g_save_sem_initialized = true;
// 启动异步保存任务
g_save_system_running = true;
g_save_task_handle = osal_kthread_create((osal_kthread_handler)save_data_task,
NULL,
"save_data_task",
TASK_STACK_SIZE);
if (g_save_task_handle == NULL) {
e_printf("创建异步保存任务失败\r\n");
g_save_system_running = false;
if (g_save_sem_initialized) {
osal_sem_destroy(&g_save_semaphore);
g_save_sem_initialized = false;
}
if (g_save_mutex_initialized) {
osal_mutex_destroy(&g_save_mutex);
g_save_mutex_initialized = false;
}
return HF_FAIL;
}
// 设置任务优先级为低优先级,避免影响实时性
osal_kthread_set_priority(g_save_task_handle, TASK_PRIORITY_LOW);
e_printf("异步保存系统初始化成功\r\n");
return HF_SUCCESS;
}
// 重置设备状态为默认值
void reset_device_state(void) {
// memset(&g_device_state, 0, sizeof(device_data_t));
// 清理异步保存系统
void save_system_deinit(void) {
e_printf("清理异步保存系统\r\n");
// 设置默认状态
g_device_state.master_switch = false; // 总开关关闭
g_device_state.panel_led = true; // 面板背光开启
g_device_state.is_bound = false; // 设备未绑定
g_device_state.is_first_boot = false; // 标记为非首次启动
g_device_state.mode = MODE_NORMAL; // 正常模式
// 停止保存系统
g_save_system_running = false;
// 所有开关默认关闭所有LED默认黄灯
for (int i = 0; i < SWITCH_COUNT; i++) {
g_device_state.switches[i].switch_on = false; // 开关关闭
g_device_state.switches[i].led_state = false; // LED黄灯
g_device_state.switches[i].physical_key = true; // 按键松开
// 唤醒保存任务使其退出
if (g_save_sem_initialized) {
osal_sem_up(&g_save_semaphore);
}
e_printf("[STATE] 设备状态已重置为默认值\r\n");
// 等待任务退出
if (g_save_task_handle) {
osal_kthread_destroy(g_save_task_handle, 1);
g_save_task_handle = NULL;
}
// 清理同步原语
if (g_save_sem_initialized) {
osal_sem_destroy(&g_save_semaphore);
g_save_sem_initialized = false;
}
if (g_save_mutex_initialized) {
osal_mutex_destroy(&g_save_mutex);
g_save_mutex_initialized = false;
}
e_printf("异步保存系统清理完成\r\n");
}
// 异步保存持久化状态(触发保存任务)
int save_persistent_state(void) {
if (!g_save_system_running || !g_save_sem_initialized) {
e_printf("异步保存系统未初始化,使用同步保存\r\n");
return save_persistent_state_sync();
}
// 发送保存信号
osal_sem_up(&g_save_semaphore);
e_printf("已触发异步保存\r\n");
return HF_SUCCESS;
}
// 同步保存持久化状态到 Flash实际的Flash写入操作
int save_persistent_state_sync(void) {
int ret = 0;
static device_persistent_state_t state = {};
bool need_save = false;
// 使用互斥锁保护状态访问
if (g_save_mutex_initialized && osal_mutex_lock(&g_save_mutex) != OSAL_SUCCESS) {
e_printf("获取保存互斥锁失败\r\n");
return HF_FAIL;
}
// 检查是否有变化避免不必要的Flash写入
if (memcmp(&state, &g_persistent_state, sizeof(device_persistent_state_t)) != 0) {
need_save = true;
}
if (!need_save) {
if (g_save_mutex_initialized) {
osal_mutex_unlock(&g_save_mutex);
}
e_printf("持久化状态未变化,跳过保存\r\n");
return HF_SUCCESS;
}
// 准备数据
memcpy(&state, &g_persistent_state, sizeof(device_persistent_state_t));
// 释放互斥锁避免在Flash写入过程中长时间锁定
if (g_save_mutex_initialized) {
osal_mutex_unlock(&g_save_mutex);
}
// 保存到主存储区
bool ret_main = write_device_data_to_addr(DEVICE_DATA_FLASH_ADDR, (uint8_t*)&state, sizeof(state));
if (!ret_main) {
e_printf("写入主存储区失败\r\n");
return HF_FAIL;
}
// 保存到备份区
bool ret_backup = write_device_data_to_addr(DEVICE_DATA_BACKUP_ADDR, (uint8_t*)&state, sizeof(state));
if (!ret_backup) {
e_printf("写入备份区失败\r\n");
}
g_runtime_state.last_save_time = hfsys_get_time();
e_printf("持久化状态保存完成\r\n");
return HF_SUCCESS;
}
// 重置持久化状态为默认值
void reset_persistent_state(void) {
// 设置默认状态
g_persistent_state.master_switch = false; // 总开关关闭
g_persistent_state.panel_led = true; // 面板背光开启
g_persistent_state.is_bound = false; // 设备未绑定
g_persistent_state.is_first_boot = true; // 标记为首次启动
// 所有开关默认关闭所有LED默认黄灯初始化默认名字
for (int i = 0; i < SWITCH_COUNT; i++) {
g_persistent_state.switches[i].switch_on = false; // 开关关闭
g_persistent_state.switches[i].led_state = false; // LED黄灯
snprintf(g_persistent_state.switches[i].name, SWITCH_NAME_MAX_LEN, "开关%d", i + 1); // 默认名字
}
g_persistent_state.magic = DEVICE_DATA_MAGIC;
g_persistent_state.version = DEVICE_DATA_VERSION;
e_printf("[STATE] 持久化状态已重置为默认值\r\n");
}
// 初始化运行时状态
void init_runtime_state(void) {
g_runtime_state.mode = MODE_NORMAL;
g_runtime_state.ble_mode_enabled = false;
g_runtime_state.config_start_time = 0;
g_runtime_state.config_key_id = -1;
g_runtime_state.config_led_blink_state = false;
g_runtime_state.factory_test_running = false;
g_runtime_state.last_save_time = 0;
// 初始化所有开关的运行时状态
for (int i = 0; i < SWITCH_COUNT; i++) {
g_runtime_state.switches[i].physical_key = true; // 按键松开
g_runtime_state.switches[i].press_time = 0;
g_runtime_state.switches[i].debounce_flag = false;
g_runtime_state.switches[i].long_press_handled = false;
}
e_printf("[STATE] 运行时状态已初始化\r\n");
}
//====================== GPIO配置数据结构 ======================
typedef struct {
pin_t pin;
pin_mode_t mode;
pin_pull_t pull;
pin_drive_strength_t ds;
gpio_direction_t direction;
const char* name;
} gpio_config_t;
@ -228,25 +627,25 @@ typedef struct {
// GPIO初始化配置表
static const gpio_config_t gpio_configs[] = {
// 开关控制 - 输出
{SWITCH1_GPIO, GPIO_DIRECTION_OUTPUT, "SWITCH1"},
{SWITCH2_GPIO, GPIO_DIRECTION_OUTPUT, "SWITCH2"},
{SWITCH3_GPIO, GPIO_DIRECTION_OUTPUT, "SWITCH3"},
{SWITCH4_GPIO, GPIO_DIRECTION_OUTPUT, "SWITCH4"},
{SWITCH1_GPIO, PIN_MODE_1, PIN_PULL_TYPE_DOWN, PIN_DS_4, GPIO_DIRECTION_OUTPUT, "SWITCH1"},
{SWITCH2_GPIO, PIN_MODE_1, PIN_PULL_TYPE_DOWN, PIN_DS_4, GPIO_DIRECTION_OUTPUT, "SWITCH2"},
{SWITCH3_GPIO, PIN_MODE_1, PIN_PULL_TYPE_DOWN, PIN_DS_4, GPIO_DIRECTION_OUTPUT, "SWITCH3"},
{SWITCH4_GPIO, PIN_MODE_1, PIN_PULL_TYPE_DOWN, PIN_DS_4, GPIO_DIRECTION_OUTPUT, "SWITCH4"},
// 物理按键 - 输入
{KEY1_GPIO, GPIO_DIRECTION_INPUT, "KEY1"},
{KEY2_GPIO, GPIO_DIRECTION_INPUT, "KEY2"},
{KEY3_GPIO, GPIO_DIRECTION_INPUT, "KEY3"},
{KEY4_GPIO, GPIO_DIRECTION_INPUT, "KEY4"},
{KEY1_GPIO, PIN_MODE_0, PIN_PULL_TYPE_STRONG_UP, PIN_DS_3, GPIO_DIRECTION_INPUT, "KEY1"},
{KEY2_GPIO, PIN_MODE_0, PIN_PULL_TYPE_STRONG_UP, PIN_DS_3, GPIO_DIRECTION_INPUT, "KEY2"},
{KEY3_GPIO, PIN_MODE_0, PIN_PULL_TYPE_STRONG_UP, PIN_DS_3, GPIO_DIRECTION_INPUT, "KEY3"},
{KEY4_GPIO, PIN_MODE_0, PIN_PULL_TYPE_STRONG_UP, PIN_DS_3, GPIO_DIRECTION_INPUT, "KEY4"},
// 面板背光 - 输出
{PANEL_LED_GPIO, GPIO_DIRECTION_OUTPUT, "PANEL_LED"},
{PANEL_LED_GPIO, PIN_MODE_1, PIN_PULL_TYPE_DISABLE, PIN_DS_7, GPIO_DIRECTION_OUTPUT, "PANEL_LED"},
// LED指示灯 - 输出
{LED1_GPIO, GPIO_DIRECTION_OUTPUT, "LED1"},
{LED2_GPIO, GPIO_DIRECTION_OUTPUT, "LED2"},
{LED3_GPIO, GPIO_DIRECTION_OUTPUT, "LED3"},
// {LED4_GPIO, GPIO_DIRECTION_OUTPUT, "LED4"},
{LED1_GPIO, PIN_MODE_1, PIN_PULL_TYPE_DISABLE, PIN_DS_7, GPIO_DIRECTION_OUTPUT, "LED1"},
{LED2_GPIO, PIN_MODE_1, PIN_PULL_TYPE_DISABLE, PIN_DS_7, GPIO_DIRECTION_OUTPUT, "LED2"},
{LED3_GPIO, PIN_MODE_1, PIN_PULL_TYPE_DISABLE, PIN_DS_7, GPIO_DIRECTION_OUTPUT, "LED3"},
{LED4_GPIO, PIN_MODE_1, PIN_PULL_TYPE_DISABLE, PIN_DS_7, GPIO_DIRECTION_OUTPUT, "LED4"},
};
@ -260,24 +659,34 @@ int switch_panel_gpio_init(void) {
// 初始化pinctrl和GPIO
uapi_pin_init();
// uapi_gpio_init();
uapi_gpio_init();
// 使用循环配置所有GPIO
for (uint32_t i = 0; i < GPIO_CONFIG_COUNT; i++) {
const gpio_config_t* config = &gpio_configs[i];
// 设置为GPIO模式
ret = uapi_pin_set_mode(config->pin, PIN_MODE_0);
if (ret != HF_SUCCESS) {
ret = uapi_pin_set_mode(config->pin, config->mode);
if (ret != 0) {
e_printf("[GPIO] %s pinctrl初始化失败: %d\r\n", config->name, ret);
return ret;
return HF_FAIL;
}
ret = uapi_pin_set_pull(config->pin, config->pull);
if (ret != 0) {
e_printf("[GPIO] %s pinctrl初始化失败: %d\r\n", config->name, ret);
return HF_FAIL;
}
ret = uapi_pin_set_ds(config->pin, config->ds);
if (ret != 0) {
e_printf("[GPIO] %s pinctrl初始化失败: %d\r\n", config->name, ret);
return HF_FAIL;
}
// 设置GPIO方向
ret = uapi_gpio_set_dir(config->pin, config->direction);
if (ret != HF_SUCCESS) {
if (ret != 0) {
e_printf("[GPIO] %s 设置方向失败: %d\r\n", config->name, ret);
return ret;
return HF_FAIL;
}
e_printf("[GPIO] %s 初始化完成 (方向: %s)\r\n",
@ -361,16 +770,16 @@ bool get_key_input(int key_id) {
//====================== 设备状态同步函数 ======================
// 同步硬件状态与软件状态
// 同步硬件状态与持久化状态
void sync_hardware_state(void) {
// 同步所有开关状态
for (int i = 0; i < SWITCH_COUNT; i++) {
set_switch_output(i, g_device_state.switches[i].switch_on);
set_led_output(i, g_device_state.switches[i].led_state ? LED_WHITE : LED_YELLOW);
set_switch_output(i, g_persistent_state.switches[i].switch_on);
set_led_output(i, g_persistent_state.switches[i].led_state ? LED_WHITE : LED_YELLOW);
}
// 同步面板背光状态
set_panel_led(g_device_state.panel_led ? PANEL_LED_ON : PANEL_LED_OFF);
set_panel_led(g_persistent_state.panel_led ? PANEL_LED_ON : PANEL_LED_OFF);
e_printf("[STATE] 硬件状态已同步\r\n");
}
@ -381,32 +790,50 @@ int switch_panel_main(void) {
int ret = HF_SUCCESS;
if (g_initialized) {
e_printf("[MAIN] 开关面板已初始化\r\n");
e_printf("开关面板已初始化\r\n");
return HF_SUCCESS;
}
g_initialized = true;
e_printf("[MAIN] 开始初始化SORONTEK智能面板...\r\n");
e_printf("开始初始化SORONTEK智能面板...\r\n");
// 加载设备状态
ret = load_device_state();
// 初始化运行时状态
init_runtime_state();
// 初始化异步保存系统
ret = save_system_init();
if (ret != HF_SUCCESS) {
e_printf("[MAIN] 加载设备状态失败: %d\r\n", ret);
e_printf("异步保存系统初始化失败: %d\r\n", ret);
return ret;
}
// 检查是否首次启动,如果是则标记为非首次
bool first_boot = g_device_state.is_first_boot;
if (g_device_state.is_first_boot) {
g_device_state.is_first_boot = false; // 标记为非首次启动
e_printf("[MAIN] 检测到首次启动\r\n");
// 初始化异步上报系统
ret = report_system_init();
if (ret != HF_SUCCESS) {
e_printf("异步上报系统初始化失败: %d\r\n", ret);
// 上报系统失败不影响主流程,继续运行
}
// 加载持久化状态
ret = load_persistent_state();
if (ret != HF_SUCCESS) {
e_printf("加载持久化状态失败: %d\r\n", ret);
return ret;
}
// 检查是否首次启动
bool first_boot = g_persistent_state.is_first_boot;
e_printf("设备状态 - 首次启动: %s, 绑定状态: %s\r\n",
first_boot ? "" : "",
g_persistent_state.is_bound ? "已绑定" : "未绑定");
// 初始化GPIO
ret = switch_panel_gpio_init();
if (ret != HF_SUCCESS) {
e_printf("[MAIN] GPIO初始化失败: %d\r\n", ret);
e_printf("GPIO初始化失败: %d\r\n", ret);
return ret;
}
if(key_system_init() != HF_SUCCESS) {
e_printf("[MAIN] 按键系统初始化失败: %d\r\n", ret);
e_printf("按键系统初始化失败: %d\r\n", ret);
return ret;
}
@ -414,24 +841,27 @@ int switch_panel_main(void) {
sync_hardware_state();
// 保存状态更新
save_device_state();
save_persistent_state();
// 配网逻辑:
// 1. 如果设备未绑定 且 是第一次启动 -> 直接进入配网
// 2. 如果设备未绑定 且 不是第一次启动 -> 等待按键触发配网
if (!g_device_state.is_bound) {
if (!g_persistent_state.is_bound) {
if (first_boot) {
e_printf("[MAIN] 首次启动且未绑定,直接进入配网模式\r\n");
e_printf("首次启动且未绑定,直接进入配网模式\r\n");
enter_config_mode();
} else {
e_printf("[MAIN] 设备未绑定,等待按键触发配网\r\n");
e_printf("设备未绑定,等待按键触发配网\r\n");
// 配网逻辑将在按键处理函数中实现
}
} else {
e_printf("[MAIN] 设备已绑定,正常运行\r\n");
e_printf("设备已绑定,正常运行\r\n");
// 设备已绑定时禁用蓝牙模式,使用云端控制
extern void switch_panel_ble_disable(void);
switch_panel_ble_disable();
}
e_printf("[MAIN] SORONTEK智能面板初始化完成\r\n");
e_printf("SORONTEK智能面板初始化完成\r\n");
print_device_state();
return HF_SUCCESS;
@ -441,17 +871,18 @@ int switch_panel_main(void) {
void print_device_state(void) {
e_printf("\r\n===== 设备状态信息 =====\r\n");
e_printf("总开关: %s\r\n", g_device_state.master_switch ? "" : "");
e_printf("面板背光: %s\r\n", g_device_state.panel_led ? "" : "");
e_printf("绑定状态: %s\r\n", g_device_state.is_bound ? "已绑定" : "未绑定");
e_printf("首次启动: %s\r\n", g_device_state.is_first_boot ? "" : "");
e_printf("工作模式: %s\r\n", get_mode_string(g_device_state.mode));
e_printf("总开关: %s\r\n", g_persistent_state.master_switch ? "" : "");
e_printf("面板背光: %s\r\n", g_persistent_state.panel_led ? "" : "");
e_printf("绑定状态: %s\r\n", g_persistent_state.is_bound ? "已绑定" : "未绑定");
e_printf("首次启动: %s\r\n", g_persistent_state.is_first_boot ? "" : "");
e_printf("工作模式: %s\r\n", get_mode_string(g_runtime_state.mode));
for (int i = 0; i < SWITCH_COUNT; i++) {
e_printf("开关%d: %s, LED: %s\r\n",
e_printf("开关%d(%s): %s, LED: %s\r\n",
i + 1,
g_device_state.switches[i].switch_on ? "" : "",
g_device_state.switches[i].led_state ? "白灯" : "黄灯");
g_persistent_state.switches[i].name,
g_persistent_state.switches[i].switch_on ? "" : "",
g_persistent_state.switches[i].led_state ? "白灯" : "黄灯");
}
e_printf("=======================\r\n\r\n");
}
@ -464,4 +895,115 @@ const char* get_mode_string(system_mode_t mode) {
case MODE_UNBIND: return "解绑模式";
default: return "未知模式";
}
}
//====================== 开关名字操作函数 ======================
// 获取开关名字
const char* get_switch_name(int switch_id) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT) {
return "";
}
return g_persistent_state.switches[switch_id].name;
}
// 设置开关名字
int set_switch_name(int switch_id, const char* name) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT || !name) {
e_printf("无效的开关ID或名字参数: switch_id=%d\r\n", switch_id);
return HF_FAIL;
}
// 使用互斥锁保护状态访问
if (g_save_mutex_initialized && osal_mutex_lock(&g_save_mutex) != OSAL_SUCCESS) {
e_printf("获取互斥锁失败\r\n");
return HF_FAIL;
}
// 检查名字是否相同,相同则跳过保存
if (strcmp(g_persistent_state.switches[switch_id].name, name) == 0) {
if (g_save_mutex_initialized) {
osal_mutex_unlock(&g_save_mutex);
}
e_printf("开关%d名字未变化跳过保存: %s\r\n", switch_id + 1, name);
return HF_SUCCESS;
}
// 复制名字,确保不会溢出
int ret = strncpy_s(g_persistent_state.switches[switch_id].name,
SWITCH_NAME_MAX_LEN,
name,
SWITCH_NAME_MAX_LEN - 1);
if (ret != 0) {
e_printf("开关%d名字复制失败: %d\r\n", switch_id + 1, ret);
if (g_save_mutex_initialized) {
osal_mutex_unlock(&g_save_mutex);
}
return HF_FAIL;
}
// 确保字符串以NULL结尾
g_persistent_state.switches[switch_id].name[SWITCH_NAME_MAX_LEN - 1] = '\0';
if (g_save_mutex_initialized) {
osal_mutex_unlock(&g_save_mutex);
}
e_printf("开关%d名字已更新为: %s\r\n",
switch_id + 1, g_persistent_state.switches[switch_id].name);
// 异步保存状态
save_persistent_state();
return HF_SUCCESS;
}
// 初始化默认开关名字
void init_default_switch_names(void) {
for (int i = 0; i < SWITCH_COUNT; i++) {
snprintf(g_persistent_state.switches[i].name, SWITCH_NAME_MAX_LEN, "开关%d", i + 1);
}
e_printf("默认开关名字已初始化\r\n");
}
//====================== 状态访问便利函数 ======================
// 获取开关状态
bool get_switch_state(int switch_id) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT) {
return false;
}
return g_persistent_state.switches[switch_id].switch_on;
}
// 获取总开关状态
bool get_master_switch_state(void) {
return g_persistent_state.master_switch;
}
// 获取设备绑定状态
bool is_device_bound(void) {
return g_persistent_state.is_bound;
}
// 获取是否首次启动
bool is_first_boot(void) {
return g_persistent_state.is_first_boot;
}
// 获取当前工作模式
system_mode_t get_device_mode(void) {
return g_runtime_state.mode;
}
// 设置设备工作模式
void set_device_mode(system_mode_t mode) {
if (g_runtime_state.mode != mode) {
system_mode_t old_mode = g_runtime_state.mode;
g_runtime_state.mode = mode;
e_printf("[MODE] 设备模式切换: %s -> %s\r\n",
get_mode_string(old_mode), get_mode_string(mode));
}
}