claude 生成初步代码

This commit is contained in:
2025-07-06 19:21:42 +08:00
parent 18171d2ea4
commit 1046873661
15 changed files with 1656 additions and 212 deletions

View File

@ -6,12 +6,18 @@ set(COMPONENT_NAME "user_main")
set(SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/app_main.c
${CMAKE_CURRENT_SOURCE_DIR}/switch_panel/switch_panel_main.c
${CMAKE_CURRENT_SOURCE_DIR}/switch_panel/switch_panel_keys.c
${CMAKE_CURRENT_SOURCE_DIR}/switch_panel/switch_panel_hilink.c
${CMAKE_CURRENT_SOURCE_DIR}/switch_panel/switch_panel_config.c
)
if (DEFINES MATCHES "HF_MCU_OTA")
list(APPEND SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/mcu_update.c)
endif()
set(PUBLIC_HEADER
${CMAKE_CURRENT_SOURCE_DIR}
${CMAKE_CURRENT_SOURCE_DIR}/switch_panel/
)
set(PRIVATE_HEADER

View File

@ -6,7 +6,10 @@
*
*/
#include <stdbool.h>
#include "hsf.h"
#include "hfgpio.h"
#include "switch_panel.h"
#ifdef HF_MCU_OTA
#include "mcu_update.h"
#endif
@ -196,6 +199,15 @@ int hf_atcmd_appver(pat_session_t s,int argc,char *argv[],char *rsp,int len)
}
return -3;
}
#ifdef CONFIG_SPOTLIGHT_UT
extern int hf_atcmd_pwm(pat_session_t s, int argc, char *argv[], char *rsp, int len);
extern int hf_atcmd_pwm_query(pat_session_t s, int argc, char *argv[], char *rsp, int len);
extern int hf_atcmd_light(pat_session_t s, int argc, char *argv[], char *rsp, int len);
extern int hf_atcmd_light_query(pat_session_t s, int argc, char *argv[], char *rsp, int len);
extern int hf_atcmd_reset(pat_session_t s, int argc, char *argv[], char *rsp, int len);
extern int hf_atcmd_reset_factory(pat_session_t s, int argc, char *argv[], char *rsp, int len);
#endif
const hfat_cmd_t user_define_at_cmds_table[]=
{
{"APPVER", hf_atcmd_appver, "AT+APPVER: get version. \r\n",NULL},
@ -204,16 +216,32 @@ const hfat_cmd_t user_define_at_cmds_table[]=
{"MCUVER", hf_atcmd_mcuver, "AT+MCUVER: get mcu version. \r\n",NULL},
{"OTAWAITTIME", hf_atcmd_ota_wait_time, "AT+OTAWAITTIME: set/get uart send mcu ota time\r\n", NULL},
#endif
{NULL, NULL, NULL, NULL} //the last item must be null
#ifdef CONFIG_SPOTLIGHT_UT
{"RESET", hf_atcmd_reset, "AT+RESET: reset. \r\n",NULL},
{"FACTORY", hf_atcmd_reset_factory, "AT+FACTORY: factory. \r\n",NULL},
{"UTPWM", hf_atcmd_pwm, "AT+PWM=<channel>,<duty>: Set PWM duty cycle (0-1000)\r\n", NULL},
{"UTLIGHT", hf_atcmd_light, "AT+LIGHT=<brightness>,<cct>: Set brightness(0-1000) and CCT(2700-6000)\r\n", NULL},
{"UTPWMQ", NULL, "AT+PWMQ=<channel>,<duty>: Set PWM duty cycle (0-1000)\r\n", hf_atcmd_pwm_query},
{"UTLIGHTQ", NULL, "AT+LIGHTQ=<brightness>,<cct>: Set brightness(0-1000) and CCT(2700-6000)\r\n", hf_atcmd_light_query},
#endif
{NULL, NULL, NULL, NULL} //the last item must be null
};
int USER_FUNC user_app_main(void)
{
hfdbg_set_level(1);
//AT+UART uart0
if(hfnet_start_uart(HFTHREAD_PRIORITIES_LOW,(hfnet_callback_t)uart_recv_callback)!=HF_SUCCESS)
{
HF_Debug(DEBUG_WARN,"start uart fail!\r\n");
}
switch_panel_main(); // 四开关面板主程序
// 初始化按键扫描系统
extern int key_system_init(void);
if(key_system_init() != HF_SUCCESS) {
HF_Debug(DEBUG_WARN,"key system init fail!\r\n");
}
#ifdef HF_MCU_OTA
if(hf_mcu_init() != HF_SUCCESS)
HF_Debug(DEBUG_WARN,"init mcu ota fail!\r\n");

View File

@ -0,0 +1,4 @@
#ifndef FACTORY_TEST_H
#define FACTORY_TEST_H
void try_detect_factory_test(void);
#endif // FACTORY_TEST_H

View File

@ -0,0 +1,209 @@
#ifndef __SWITCH_PANEL_H__
#define __SWITCH_PANEL_H__
#include "hsf.h"
#include "cmsis_os2.h"
#include <stdint.h>
#include <stdbool.h>
#include "driver/gpio.h"
#include "driver/pinctrl.h"
#include "driver/timer.h"
#include "platform_core_rom.h"
#include "schedule/osal_task.h"
#include "hfflash.h"
#include "hfuart.h"
//====================== 硬件引脚定义 ======================
// 根据CLAUDE.md中的物理连接定义使用标准GPIO枚举
// LED指示灯引脚 (控制按键指示灯颜色: 高电平=白灯, 低电平=黄灯)
#define LED1_GPIO GPIO_00 // GPIO 0 - 按键1指示灯
#define LED2_GPIO GPIO_02 // GPIO 2 - 按键2指示灯
#define LED3_GPIO GPIO_05 // GPIO 5 - 按键3指示灯
#define LED4_GPIO GPIO_10 // GPIO 10 - 按键4指示灯
// 开关控制引脚 (控制实际开关: 高电平=开, 低电平=关)
#define SWITCH1_GPIO GPIO_12 // GPIO 12 - 开关1控制
#define SWITCH2_GPIO GPIO_13 // GPIO 13 - 开关2控制
#define SWITCH3_GPIO GPIO_14 // GPIO 14 - 开关3控制
#define SWITCH4_GPIO GPIO_07 // GPIO 7 - 开关4控制
// 物理按键输入引脚 (输入检测: 低电平=按下, 高电平=松开)
#define KEY1_GPIO GPIO_09 // GPIO 9 - 按键1输入
#define KEY2_GPIO GPIO_04 // GPIO 4 - 按键2输入
#define KEY3_GPIO GPIO_11 // GPIO 11 - 按键3输入
#define KEY4_GPIO GPIO_08 // GPIO 8 - 按键4输入
// 面板背光引脚 (控制面板背光: 高电平=亮黄灯, 低电平=灭灯)
#define PANEL_LED_GPIO GPIO_03 // GPIO 3 - 面板背光
//====================== 系统常量定义 ======================
#define SWITCH_COUNT 4 // 开关数量
#define KEY_DEBOUNCE_MS 50 // 按键防抖时间(毫秒)
#define KEY_LONG_PRESS_MS 10000 // 长按时间阈值(毫秒) - 用于进入配网
#define CONFIG_TIMEOUT_MS (10*60*1000) // 配网超时时间(10分钟)
#define CONFIG_BLINK_MS (3*60*1000) // 配网前3分钟闪烁时间
#define PANEL_BLINK_MS 1000 // 面板背光快闪时间(1秒)
#define LED_BLINK_FREQ_HZ 1 // 配网时LED闪烁频率(1Hz)
//====================== 设备状态定义 ======================
// 开关状态
typedef enum {
SWITCH_OFF = 0,
SWITCH_ON = 1
} switch_state_t;
// 按键状态
typedef enum {
KEY_RELEASED = 1, // 高电平 - 按键松开
KEY_PRESSED = 0 // 低电平 - 按键按下
} key_state_t;
// LED状态
typedef enum {
LED_YELLOW = 0, // 低电平 - 黄灯
LED_WHITE = 1 // 高电平 - 白灯
} led_state_t;
// 面板背光状态
typedef enum {
PANEL_LED_OFF = 0, // 低电平 - 背光关闭
PANEL_LED_ON = 1 // 高电平 - 背光开启(黄色)
} panel_led_state_t;
// 系统工作模式
typedef enum {
MODE_NORMAL = 0, // 正常工作模式
MODE_CONFIG, // 配网模式
MODE_FACTORY_TEST, // 产测模式
MODE_UNBIND // 设备解绑模式
} system_mode_t;
//====================== 设备状态结构 ======================
// 单个开关状态信息
typedef struct {
bool switch_on; // 开关状态 (true=开, false=关)
bool led_state; // LED状态 (true=白灯, false=黄灯)
bool physical_key; // 物理按键状态 (true=松开, false=按下)
} switch_info_t;
// 系统设备状态
typedef struct {
switch_info_t switches[SWITCH_COUNT]; // 4个开关的状态
bool master_switch; // 总开关状态
bool panel_led; // 面板背光状态
bool is_bound; // 设备绑定状态
bool is_first_boot; // 是否第一次上电
system_mode_t mode; // 系统工作模式
uint32_t reserved[10]; // 保留字段
} device_state_t;
//====================== Flash存储相关 ======================
// Flash存储地址定义
#define SUPPORT_SAVE_TO_FLASH 1
// 定义Flash存储地址和大小
#define DEVICE_DATA_FLASH_SIZE 0x001000 // 使用一个页的大小
#define DEVICE_DATA_FLASH_ADDR 0x000000 // 主数据区地址
#define DEVICE_DATA_BACKUP_ADDR (DEVICE_DATA_FLASH_ADDR + DEVICE_DATA_FLASH_SIZE) // 备份数据区地址
// 设备数据结构
typedef struct {
uint8_t checksum; // 校验和
uint32_t magic; // 魔数,用于验证数据有效性
uint32_t version; // 版本号
uint32_t data_len; // 数据长度
uint8_t data[0]; // 数据
} device_data_t;
#define DEVICE_DATA_MAGIC 0x4C505426 // "LPT&"的ASCII码
#define DEVICE_DATA_VERSION 1 // 数据版本号
//====================== 配网相关定义 ======================
#define FACTORY_TEST_SSID "ShuorongSelfTest" // 产测热点名称
#define CONFIG_ENTRY_COUNT 3 // 连续重启次数进入配网
//====================== 任务和定时器相关 ======================
#define TASK_STACK_SIZE 2048
#define TASK_PRIORITY_HIGH OSAL_TASK_PRIORITY_HIGH
#define TASK_PRIORITY_NORM OSAL_TASK_PRIORITY_MIDDLE
#define TASK_PRIORITY_LOW OSAL_TASK_PRIORITY_LOW
//====================== 全局变量声明 ======================
extern device_state_t g_device_state;
extern timer_handle_t g_key_debounce_timer[SWITCH_COUNT];
extern timer_handle_t g_config_timeout_timer;
extern timer_handle_t g_config_blink_timer;
extern osal_task *g_key_scan_task_handle;
extern osal_task *g_config_task_handle;
//====================== 函数声明 ======================
// 主程序函数
int switch_panel_main(void);
// 硬件控制函数
int switch_panel_gpio_init(void);
void set_switch_output(int switch_id, bool state);
void set_led_output(int led_id, led_state_t state);
void set_panel_led(panel_led_state_t state);
bool get_key_input(int key_id);
// 设备状态管理函数
int load_device_state(void);
int save_device_state(void);
void reset_device_state(void);
void sync_hardware_state(void);
void fast_report_switch(int switch_id);
// 开关控制函数
void update_switch_state(int switch_id, bool state);
void update_master_switch(bool state);
void apply_master_switch_control(void);
// 按键处理函数
int key_scan_task(void *arg);
void handle_key_press(int key_id);
void handle_key_long_press(int key_id);
// 配网相关函数
void enter_config_mode(void);
void exit_config_mode(void);
int config_mode_task(void *arg);
void config_led_blink(void);
void panel_led_blink(void);
// 产测相关函数
void enter_factory_test_mode(void);
void factory_test_sequence(void);
bool check_factory_test_wifi(void);
// HiLink设备事件处理
void handle_device_online(void);
void handle_device_offline(void);
void handle_device_unbind(void);
void sync_cloud_state(void);
// HiLink服务处理函数
int handle_put_switch(const char* svc_id, const char* payload, unsigned int len);
int handle_get_switch(const char* svc_id, const char* in, unsigned int in_len, char** out, unsigned int* out_len);
int handle_put_switch1(const char* svc_id, const char* payload, unsigned int len);
int handle_get_switch1(const char* svc_id, const char* in, unsigned int in_len, char** out, unsigned int* out_len);
int handle_put_switch2(const char* svc_id, const char* payload, unsigned int len);
int handle_get_switch2(const char* svc_id, const char* in, unsigned int in_len, char** out, unsigned int* out_len);
int handle_put_switch3(const char* svc_id, const char* payload, unsigned int len);
int handle_get_switch3(const char* svc_id, const char* in, unsigned int in_len, char** out, unsigned int* out_len);
int handle_put_switch4(const char* svc_id, const char* payload, unsigned int len);
int handle_get_switch4(const char* svc_id, const char* in, unsigned int in_len, char** out, unsigned int* out_len);
// 调试和工具函数
void print_device_state(void);
const char* get_mode_string(system_mode_t mode);
// 定时器回调函数
void key_debounce_timer_callback(uintptr_t data);
void config_timeout_timer_callback(uintptr_t data);
void config_blink_timer_callback(uintptr_t data);
#endif // __SWITCH_PANEL_H__

View File

@ -0,0 +1,335 @@
#include "stdint.h"
#include "hsf.h"
#include "hfsys.h"
#include "hfgpio.h"
#include "switch_panel.h"
#include "hilink.h"
#include "hsf.h"
#include "hfconfig.h"
#include "pinctrl.h"
#include "timer.h"
#include "soc_osal.h"
#include "systick.h"
//====================== 配网相关变量 ======================
static bool g_config_led_blink_state = false;
static bool g_panel_led_blink_state = false;
static uint32_t g_config_blink_start_time = 0;
static int g_config_key_id = -1; // 触发配网的按键
//====================== 产测相关变量 ======================
static bool g_factory_test_running = false;
static int g_factory_test_step = 0;
static uint32_t g_factory_test_start_time = 0;
//====================== 配网模式函数 ======================
// 进入配网模式
void enter_config_mode(void) {
if (g_device_state.mode == MODE_CONFIG) {
e_printf("[CONFIG] 已在配网模式中\r\n");
return;
}
e_printf("[CONFIG] 进入配网模式\r\n");
// 更新设备模式
set_device_mode(MODE_CONFIG);
// 记录配网开始时间
g_config_start_time = hfsys_get_time();
g_config_blink_start_time = g_config_start_time;
// 面板背光快闪1秒表示进入配网模式
panel_led_blink();
// 创建配网任务
if (!g_config_task_handle) {
g_config_task_handle = osal_kthread_create((osal_kthread_handler)config_mode_task,
NULL,
"config_task",
TASK_STACK_SIZE);
if (!g_config_task_handle) {
e_printf("[CONFIG] 创建配网任务失败\r\n");
return;
}
// 设置任务优先级
osal_kthread_set_priority(g_config_task_handle, TASK_PRIORITY_NORM);
}
// 创建配网超时定时器
if (!g_config_timeout_timer) {
int ret = uapi_timer_create(TIMER_INDEX_1, &g_config_timeout_timer);
if (ret != ERRCODE_SUCC) {
e_printf("[CONFIG] 创建配网超时定时器失败: %d\r\n", ret);
}
}
if (g_config_timeout_timer) {
uapi_timer_start(g_config_timeout_timer,
CONFIG_TIMEOUT_MS * 1000,
config_timeout_timer_callback,
0);
}
// 创建闪烁定时器
if (!g_config_blink_timer) {
int ret = uapi_timer_create(TIMER_INDEX_2, &g_config_blink_timer);
if (ret != ERRCODE_SUCC) {
e_printf("[CONFIG] 创建配网闪烁定时器失败: %d\r\n", ret);
}
}
if (g_config_blink_timer) {
uint32_t blink_period = 1000000 / (LED_BLINK_FREQ_HZ * 2); // 半周期(微秒)
uapi_timer_start(g_config_blink_timer,
blink_period,
config_blink_timer_callback,
0);
}
e_printf("[CONFIG] 配网模式已开启,超时时间: %d分钟\r\n", CONFIG_TIMEOUT_MS / 60000);
}
// 退出配网模式
void exit_config_mode(void) {
if (g_device_state.mode != MODE_CONFIG) {
return;
}
e_printf("[CONFIG] 退出配网模式\r\n");
// 停止定时器
if (g_config_timeout_timer) {
uapi_timer_stop(g_config_timeout_timer);
}
if (g_config_blink_timer) {
uapi_timer_stop(g_config_blink_timer);
}
// 终止配网任务
if (g_config_task_handle) {
osal_kthread_destroy(g_config_task_handle, 1);
g_config_task_handle = NULL;
}
// 恢复正常LED状态
for (int i = 0; i < SWITCH_COUNT; i++) {
set_led_output(i, g_device_state.switches[i].led_state ? LED_WHITE : LED_YELLOW);
}
// 恢复面板背光状态
set_panel_led(g_device_state.panel_led ? PANEL_LED_ON : PANEL_LED_OFF);
// 更新设备模式
set_device_mode(MODE_NORMAL);
// 重置配网相关变量
g_key_id = -1;
g_config_led_blink_state = false;
g_panel_led_blink_state = false;
e_printf("[CONFIG] 已退出配网模式\r\n");
}
// 配网模式任务
int config_mode_task(void *arg) {
(void)arg;
e_printf("[CONFIG] 配网任务开始\r\n");
while (g_device_state.mode == MODE_CONFIG && !osal_kthread_should_stop()) {
// 检查是否有产测热点
if (check_factory_test_wifi()) {
e_printf("[CONFIG] 检测到产测热点,进入产测模式\r\n");
exit_config_mode();
enter_factory_test_mode();
break;
}
// 每秒检查一次
osal_msleep(1000);
}
e_printf("[CONFIG] 配网任务结束\r\n");
return 0;
}
// 配网LED闪烁
void config_led_blink(void) {
uint32_t current_time = hfsys_get_time();
uint32_t elapsed_time = current_time - g_config_blink_start_time;
// 前3分钟闪烁后7分钟常亮
if (elapsed_time < CONFIG_BLINK_MS) {
// 只有触发配网的按键LED闪烁其他LED保持常亮
for (int i = 0; i < SWITCH_COUNT; i++) {
if (i == g_config_key_id) {
// 触发配网的按键LED闪烁
g_config_led_blink_state = !g_config_led_blink_state;
set_led_output(i, g_config_led_blink_state ? LED_WHITE : LED_YELLOW);
} else {
// 其他按键LED保持常亮
set_led_output(i, LED_YELLOW);
}
}
} else {
// 超过3分钟后所有LED保持常亮
for (int i = 0; i < SWITCH_COUNT; i++) {
set_led_output(i, LED_YELLOW);
}
}
}
// 面板背光快闪
void panel_led_blink(void) {
// 快闪1秒
for (int i = 0; i < 10; i++) {
set_panel_led(PANEL_LED_ON);
osal_msleep(50);
set_panel_led(PANEL_LED_OFF);
osal_msleep(50);
}
// 恢复原状态
set_panel_led(g_device_state.panel_led ? PANEL_LED_ON : PANEL_LED_OFF);
}
//====================== 产测模式函数 ======================
// 进入产测模式
void enter_factory_test_mode(void) {
e_printf("[FACTORY] 进入产测模式\r\n");
// 更新设备模式
set_device_mode(MODE_FACTORY_TEST);
// 初始化产测变量
g_factory_test_running = true;
g_factory_test_step = 0;
g_factory_test_start_time = hfsys_get_time();
// 开始产测序列
factory_test_sequence();
}
// 产测序列
void factory_test_sequence(void) {
e_printf("[FACTORY] 开始产测序列\r\n");
// 步骤1: 开始指示 - 交替闪烁白黄灯500ms
for (int i = 0; i < 6; i++) {
for (int j = 0; j < SWITCH_COUNT; j++) {
set_led_output(j, (i % 2) ? LED_WHITE : LED_YELLOW);
}
osal_msleep(500);
}
// 步骤2-5: 单个开关测试 (开1->4, 每个1.5秒)
for (int switch_id = 0; switch_id < SWITCH_COUNT; switch_id++) {
e_printf("[FACTORY] 测试开关%d\r\n", switch_id + 1);
// 所有开关关闭所有LED黄灯
for (int i = 0; i < SWITCH_COUNT; i++) {
set_switch_output(i, false);
set_led_output(i, LED_YELLOW);
}
// 当前测试的开关开启且LED白灯
set_switch_output(switch_id, true);
set_led_output(switch_id, LED_WHITE);
// 保持1.5秒
osal_msleep(1500);
}
// 步骤6: 全关 (1.5秒)
e_printf("[FACTORY] 测试全关\r\n");
for (int i = 0; i < SWITCH_COUNT; i++) {
set_switch_output(i, false);
set_led_output(i, LED_YELLOW);
}
osal_msleep(1500);
// 步骤7: 全开 (1.5秒)
e_printf("[FACTORY] 测试全开\r\n");
for (int i = 0; i < SWITCH_COUNT; i++) {
set_switch_output(i, true);
set_led_output(i, LED_WHITE);
}
osal_msleep(1500);
// 步骤8: 再次全关
e_printf("[FACTORY] 结束测试 - 全关\r\n");
for (int i = 0; i < SWITCH_COUNT; i++) {
set_switch_output(i, false);
set_led_output(i, LED_YELLOW);
}
// TODO: WiFi信号强度校验
bool wifi_test_pass = check_factory_test_wifi();
// 显示最终结果
if (wifi_test_pass) {
e_printf("[FACTORY] 产测全部通过\r\n");
// 所有开关开启表示通过
for (int i = 0; i < SWITCH_COUNT; i++) {
set_switch_output(i, true);
set_led_output(i, LED_WHITE);
}
} else {
e_printf("[FACTORY] 产测失败\r\n");
// 所有开关关闭表示失败
for (int i = 0; i < SWITCH_COUNT; i++) {
set_switch_output(i, false);
set_led_output(i, LED_YELLOW);
}
}
// 产测完成,返回正常模式
g_factory_test_running = false;
set_device_mode(MODE_NORMAL);
// 恢复设备默认状态
sync_hardware_state();
e_printf("[FACTORY] 产测序列完成\r\n");
}
// 检查产测热点
bool check_factory_test_wifi(void) {
// 简化实现直接返回false实际应该扫描WiFi热点
// TODO: 实际实现需要调用WiFi扫描接口查找 "ShuorongSelfTest" 热点
static bool test_triggered = false;
// 模拟产测触发条件(仅作为演示)
if (!test_triggered && g_device_state.power_on_count > 5) {
test_triggered = true;
return false; // 模拟找到产测热点
}
return false; // 默认未找到产测热点
}
//====================== 定时器回调函数 ======================
// 配网超时定时器回调
void config_timeout_timer_callback(uintptr_t data) {
(void)data;
e_printf("[CONFIG] 配网超时,退出配网模式\r\n");
// 超时退出配网模式
exit_config_mode();
}
// 配网闪烁定时器回调
void config_blink_timer_callback(uintptr_t data) {
(void)data;
// 执行闪烁操作
config_led_blink();
}

View File

@ -0,0 +1,255 @@
#include <stdbool.h>
#include "hsf.h"
#include "hfgpio.h"
#include "hilink.h"
#include "securec.h"
#include "cJSON.h"
#include "switch_panel.h"
//====================== HiLink 设备事件处理 ======================
// 处理设备上线事件
void handle_device_online(void) {
e_printf("[HILINK] 设备上线\r\n");
// 更新设备绑定状态
g_device_state.is_bound = true;
// 退出配网模式
if (g_device_state.mode == MODE_CONFIG) {
exit_config_mode();
}
// 同步所有状态到云端
sync_cloud_state();
// 保存状态
save_device_state();
}
// 处理设备下线事件
void handle_device_offline(void) {
e_printf("[HILINK] 设备下线\r\n");
// 设备下线时保持现有状态,不做特殊处理
}
// 处理设备解绑事件
void handle_device_unbind(void) {
e_printf("[HILINK] 设备解绑\r\n");
// 更新设备绑定状态
g_device_state.is_bound = false;
g_device_state.mode = MODE_UNBIND;
// 重置为出厂默认状态
reset_device_state();
g_device_state.is_bound = false; // 保持未绑定状态
// 同步硬件状态
sync_hardware_state();
// 保存状态
save_device_state();
e_printf("[HILINK] 设备已重置为出厂默认状态\r\n");
}
// 同步所有状态到云端
void sync_cloud_state(void) {
e_printf("[HILINK] 开始同步状态到云端\r\n");
// 上报总开关状态
extern int fast_report(const char* svc_id);
fast_report("switch");
// 上报所有子开关状态
for (int i = 0; i < SWITCH_COUNT; i++) {
char svc_id[16] = {0};
snprintf(svc_id, sizeof(svc_id), "switch%d", i + 1);
fast_report(svc_id);
// osDelay(pdMS_TO_TICKS(100)); // 防止上报过快
}
e_printf("[HILINK] 状态同步完成\r\n");
}
//====================== HiLink 服务处理函数 ======================
// 处理总开关PUT命令
int handle_put_switch(const char* svc_id, const char* payload, unsigned int len) {
if (!svc_id || !payload) {
e_printf("[HILINK] handle_put_switch 参数无效\r\n");
return -1;
}
e_printf("[HILINK] 收到总开关控制命令: %s\r\n", payload);
cJSON* json = cJSON_Parse(payload);
if (!json) {
e_printf("[HILINK] JSON解析失败\r\n");
return -1;
}
cJSON* on_item = cJSON_GetObjectItem(json, "on");
if (on_item && cJSON_IsBool(on_item)) {
bool state = cJSON_IsTrue(on_item);
update_master_switch(state);
e_printf("[HILINK] 总开关设置为: %s\r\n", state ? "" : "");
}
cJSON_Delete(json);
return 0;
}
// 处理总开关GET命令
int handle_get_switch(const char* svc_id, const char* in, unsigned int in_len,
char** out, unsigned int* out_len) {
if (!out || !out_len) {
return -1;
}
*out_len = 32;
*out = (char*)malloc(*out_len);
if (!*out) {
return -1;
}
*out_len = snprintf(*out, *out_len, "{\"on\":%s}",
g_device_state.master_switch ? "true" : "false");
e_printf("[HILINK] 返回总开关状态: %s\r\n", *out);
return 0;
}
// 处理开关1 PUT命令
int handle_put_switch1(const char* svc_id, const char* payload, unsigned int len) {
return handle_put_switch_common(0, svc_id, payload, len);
}
// 处理开关1 GET命令
int handle_get_switch1(const char* svc_id, const char* in, unsigned int in_len,
char** out, unsigned int* out_len) {
return handle_get_switch_common(0, svc_id, in, in_len, out, out_len);
}
// 处理开关2 PUT命令
int handle_put_switch2(const char* svc_id, const char* payload, unsigned int len) {
return handle_put_switch_common(1, svc_id, payload, len);
}
// 处理开关2 GET命令
int handle_get_switch2(const char* svc_id, const char* in, unsigned int in_len,
char** out, unsigned int* out_len) {
return handle_get_switch_common(1, svc_id, in, in_len, out, out_len);
}
// 处理开关3 PUT命令
int handle_put_switch3(const char* svc_id, const char* payload, unsigned int len) {
return handle_put_switch_common(2, svc_id, payload, len);
}
// 处理开关3 GET命令
int handle_get_switch3(const char* svc_id, const char* in, unsigned int in_len,
char** out, unsigned int* out_len) {
return handle_get_switch_common(2, svc_id, in, in_len, out, out_len);
}
// 处理开关4 PUT命令
int handle_put_switch4(const char* svc_id, const char* payload, unsigned int len) {
return handle_put_switch_common(3, svc_id, payload, len);
}
// 处理开关4 GET命令
int handle_get_switch4(const char* svc_id, const char* in, unsigned int in_len,
char** out, unsigned int* out_len) {
return handle_get_switch_common(3, svc_id, in, in_len, out, out_len);
}
//====================== 子开关通用处理函数 ======================
// 子开关PUT命令通用处理函数
static int handle_put_switch_common(int switch_id, const char* svc_id,
const char* payload, unsigned int len) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT || !svc_id || !payload) {
e_printf("[HILINK] handle_put_switch%d 参数无效\r\n", switch_id + 1);
return -1;
}
e_printf("[HILINK] 收到开关%d控制命令: %s\r\n", switch_id + 1, payload);
cJSON* json = cJSON_Parse(payload);
if (!json) {
e_printf("[HILINK] JSON解析失败\r\n");
return -1;
}
cJSON* on_item = cJSON_GetObjectItem(json, "on");
if (on_item && cJSON_IsBool(on_item)) {
bool state = cJSON_IsTrue(on_item);
update_switch_state(switch_id, state);
e_printf("[HILINK] 开关%d设置为: %s\r\n",
switch_id + 1, state ? "" : "");
}
// 检查是否有name字段预留功能
cJSON* name_item = cJSON_GetObjectItem(json, "name");
if (name_item && cJSON_IsString(name_item)) {
e_printf("[HILINK] 开关%d名称: %s\r\n",
switch_id + 1, cJSON_GetStringValue(name_item));
// TODO: 将来可以存储开关名称
}
cJSON_Delete(json);
return 0;
}
// 子开关GET命令通用处理函数
static int handle_get_switch_common(int switch_id, const char* svc_id,
const char* in, unsigned int in_len,
char** out, unsigned int* out_len) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT || !out || !out_len) {
return -1;
}
*out_len = 64;
*out = (char*)malloc(*out_len);
if (!*out) {
return -1;
}
// 返回开关状态和名称
*out_len = snprintf(*out, *out_len,
"{\"on\":%s,\"name\":\"开关%d\"}",
g_device_state.switches[switch_id].switch_on ? "true" : "false",
switch_id + 1);
e_printf("[HILINK] 返回开关%d状态: %s\r\n", switch_id + 1, *out);
return 0;
}
//====================== HiLink 事件扩展函数 ======================
// 检查设备是否在线
bool is_device_online(void) {
return g_device_state.is_bound;
}
// 获取设备当前模式
system_mode_t get_current_mode(void) {
return g_device_state.mode;
}
// 设置设备工作模式
void set_device_mode(system_mode_t mode) {
if (g_device_state.mode != mode) {
system_mode_t old_mode = g_device_state.mode;
g_device_state.mode = mode;
e_printf("[MODE] 设备模式切换: %s -> %s\r\n",
get_mode_string(old_mode), get_mode_string(mode));
// 保存模式变更
save_device_state();
}
}

View File

@ -0,0 +1,293 @@
#include "switch_panel.h"
#include "hilink.h"
//====================== 按键检测相关变量 ======================
static bool g_key_states[SWITCH_COUNT] = {true, true, true, true}; // 上一次按键状态
static uint32_t g_key_press_time[SWITCH_COUNT] = {0}; // 按键按下开始时间
static bool g_key_debounce_flag[SWITCH_COUNT] = {false}; // 防抖标志
static bool g_is_long_press_handled[SWITCH_COUNT] = {false}; // 长按处理标志
// 定时器参数
typedef struct {
int key_id;
} key_timer_param_t;
static key_timer_param_t g_timer_params[SWITCH_COUNT];
//====================== 开关控制函数 ======================
// 更新单个开关状态
void update_switch_state(int switch_id, bool state) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT) {
e_printf("[SWITCH] 无效的开关ID: %d\r\n", switch_id);
return;
}
// 检查总开关是否允许操作
if (!g_device_state.master_switch && state) {
e_printf("[SWITCH] 总开关关闭,不允许开启开关%d\r\n", switch_id + 1);
return;
}
// 更新开关状态
if (g_device_state.switches[switch_id].switch_on != state) {
g_device_state.switches[switch_id].switch_on = state;
// 更新LED指示灯(开关开启时LED白灯关闭时LED黄灯)
g_device_state.switches[switch_id].led_state = state;
// 同步硬件状态
set_switch_output(switch_id, state);
set_led_output(switch_id, state ? LED_WHITE : LED_YELLOW);
e_printf("[SWITCH] 开关%d 状态更新: %s\r\n",
switch_id + 1, state ? "" : "");
// 立即保存状态
save_device_state();
// 上报状态给云端
if (g_device_state.is_bound) {
fast_report_switch(switch_id);
}
}
}
// 更新总开关状态
void update_master_switch(bool state) {
if (g_device_state.master_switch != state) {
g_device_state.master_switch = state;
e_printf("[SWITCH] 总开关状态更新: %s\r\n", state ? "" : "");
// 应用总开关控制逻辑
apply_master_switch_control();
// 立即保存状态
save_device_state();
// 上报状态给云端
if (g_device_state.is_bound) {
fast_report_master_switch();
}
}
}
// 应用总开关控制逻辑
void apply_master_switch_control(void) {
for (int i = 0; i < SWITCH_COUNT; i++) {
if (!g_device_state.master_switch) {
// 总开关关闭时关闭所有开关但保持LED状态
set_switch_output(i, false);
} else {
// 总开关开启时,恢复各开关的原状态
set_switch_output(i, g_device_state.switches[i].switch_on);
}
// LED状态保持不变始终显示实际的开关状态
set_led_output(i, g_device_state.switches[i].led_state ? LED_WHITE : LED_YELLOW);
}
}
//====================== 按键检测与处理 ======================
// 按键防抖定时器回调
void key_debounce_timer_callback(uintptr_t data) {
key_timer_param_t *param = (key_timer_param_t *)data;
if (!param) return;
int key_id = param->key_id;
if (key_id < 0 || key_id >= SWITCH_COUNT) return;
// 清除防抖标志
g_key_debounce_flag[key_id] = false;
}
// 按键扫描任务
int key_scan_task(void *arg) {
(void)arg;
e_printf("[KEY] 按键扫描任务开始\r\n");
while (!osal_kthread_should_stop()) {
// 扫描所有按键
for (int i = 0; i < SWITCH_COUNT; i++) {
bool current_state = get_key_input(i);
uint32_t current_time = hfsys_get_time();
// 检测按键状态变化
if (current_state != g_key_states[i] && !g_key_debounce_flag[i]) {
if (current_state == KEY_PRESSED) {
// 按键按下
g_key_press_time[i] = current_time;
g_is_long_press_handled[i] = false;
e_printf("[KEY] 按键%d 按下\r\n", i + 1);
} else {
// 按键松开
uint32_t press_duration = current_time - g_key_press_time[i];
if (press_duration >= KEY_LONG_PRESS_MS && !g_is_long_press_handled[i]) {
// 长按事件(如果在按下期间没有处理)
handle_key_long_press(i);
g_is_long_press_handled[i] = true;
} else if (press_duration < KEY_LONG_PRESS_MS) {
// 短按事件
handle_key_press(i);
}
e_printf("[KEY] 按键%d 松开 (持续时间: %ums)\r\n",
i + 1, press_duration);
}
// 启动防抖定时器
g_key_debounce_flag[i] = true;
if (g_key_debounce_timer[i]) {
uapi_timer_start(g_key_debounce_timer[i],
KEY_DEBOUNCE_MS * 1000,
key_debounce_timer_callback,
(uintptr_t)&g_timer_params[i]);
}
g_key_states[i] = current_state;
g_device_state.switches[i].physical_key = current_state;
}
// 检查是否达到长按时间(在按下期间监测)
if (current_state == KEY_PRESSED && !g_is_long_press_handled[i]) {
uint32_t press_duration = current_time - g_key_press_time[i];
if (press_duration >= KEY_LONG_PRESS_MS) {
handle_key_long_press(i);
g_is_long_press_handled[i] = true;
}
}
}
// 休眠一段时间再继续扫描
osal_msleep(10); // 10ms扫描间隔
}
return 0;
}
// 处理按键短按事件
void handle_key_press(int key_id) {
if (key_id < 0 || key_id >= SWITCH_COUNT) {
return;
}
e_printf("[KEY] 处理按键%d 短按事件\r\n", key_id + 1);
// 在配网模式下,忽略短按事件
if (g_device_state.mode == MODE_CONFIG) {
e_printf("[KEY] 配网模式下,忽略短按事件\r\n");
return;
}
// 在产测模式下,忽略短按事件
if (g_device_state.mode == MODE_FACTORY_TEST) {
e_printf("[KEY] 产测模式下,忽略短按事件\r\n");
return;
}
// 正常模式下切换开关状态
bool current_state = g_device_state.switches[key_id].switch_on;
update_switch_state(key_id, !current_state);
}
// 处理按键长按事件
void handle_key_long_press(int key_id) {
if (key_id < 0 || key_id >= SWITCH_COUNT) {
return;
}
e_printf("[KEY] 处理按键%d 长按事件\r\n", key_id + 1);
// 只有第一个按键支持长按进入配网模式
if (key_id == 0) {
e_printf("[KEY] 长按第一个按键,进入配网模式\r\n");
// 只有在正常模式下才能进入配网模式
if (g_device_state.mode == MODE_NORMAL) {
enter_config_mode();
} else {
e_printf("[KEY] 非正常模式,不能进入配网模式\r\n");
}
} else {
e_printf("[KEY] 非第一个按键的长按,忽略\r\n");
}
}
//====================== 初始化函数 ======================
int key_system_init(void) {
int ret = ERRCODE_SUCC;
// 初始化定时器
ret = uapi_timer_init();
if (ret != ERRCODE_SUCC) {
e_printf("[KEY] 定时器初始化失败: %d\r\n", ret);
return HF_FAIL;
}
// 初始化定时器参数
for (int i = 0; i < SWITCH_COUNT; i++) {
g_timer_params[i].key_id = i;
// 创建防抖定时器
ret = uapi_timer_create(TIMER_INDEX_0, &g_key_debounce_timer[i]);
if (ret != ERRCODE_SUCC) {
e_printf("[KEY] 创建按键%d防抖定时器失败: %d\r\n", i + 1, ret);
return HF_FAIL;
}
// 初始化按键状态
g_key_states[i] = get_key_input(i);
g_device_state.switches[i].physical_key = g_key_states[i];
}
// 创建按键扫描任务
g_key_scan_task_handle = osal_kthread_create((osal_kthread_handler)key_scan_task,
NULL,
"key_scan",
TASK_STACK_SIZE);
if (!g_key_scan_task_handle) {
e_printf("[KEY] 创建按键扫描任务失败\r\n");
return HF_FAIL;
}
// 设置任务优先级
ret = osal_kthread_set_priority(g_key_scan_task_handle, TASK_PRIORITY_NORM);
if (ret != 0) {
e_printf("[KEY] 设置按键扫描任务优先级失败: %d\r\n", ret);
}
e_printf("[KEY] 按键系统初始化完成\r\n");
return HF_SUCCESS;
}
//====================== 快速上报函数 ======================
// 快速上报单个开关状态
void fast_report_switch(int switch_id) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT) {
return;
}
char svc_id[16] = {0};
snprintf(svc_id, sizeof(svc_id), "switch%d", switch_id + 1);
// 使用已有的fast_report函数
extern int fast_report(const char* svc_id);
fast_report(svc_id);
e_printf("[REPORT] 已上报开关%d状态\r\n", switch_id + 1);
}
// 快速上报总开关状态
void fast_report_master_switch(void) {
extern int fast_report(const char* svc_id);
fast_report("switch");
e_printf("[REPORT] 已上报总开关状态\r\n");
}

View File

@ -0,0 +1,432 @@
#include "switch_panel.h"
#include "hilink.h"
#include "securec.h"
#include "hilink_sal_defines.h"
#include "driver/pinctrl.h"
#include "driver/gpio.h"
#include "platform_core_rom.h"
//====================== 全局变量 ======================
device_state_t g_device_state = {0};
timer_handle_t g_key_debounce_timer[SWITCH_COUNT] = {0};
timer_handle_t g_config_timeout_timer = 0;
timer_handle_t g_config_blink_timer = 0;
osal_task *g_key_scan_task_handle = NULL;
osal_task *g_config_task_handle = NULL;
static bool g_initialized = false;
static uint32_t g_config_start_time = 0;
static bool g_config_led_state = false;
//====================== 存储管理函数 ======================
// 计算数据校验码
// 计算校验和
static uint8_t calculate_checksum(const uint8_t* data, int len)
{
uint8_t sum = 0;
for (int i = 0; i < len; i++) {
sum ^= data[i];
}
return sum;
}
// 从指定地址读取设备数据
static bool read_device_data_from_addr(uint32_t addr, uint8_t* data, uint32_t len)
{
int total_size = sizeof(device_data_t) + len;
device_data_t *data_all = malloc(total_size);
if (data_all == NULL) {
e_printf("内存分配失败\r\n");
return false;
}
int ret = hfuflash_read(addr, (char*)data_all, total_size);
if (ret != total_size) {
e_printf("从地址0x%x读取设备数据失败实际读取长度%d\r\n", addr, ret);
goto lab_err;
}
uint8_t checksum = calculate_checksum(data_all->data, data_all->data_len);
if (checksum != data_all->checksum) {
e_printf("check sum error:%x\n", data_all->version);
goto lab_err;
}
if (data_all->magic != DEVICE_DATA_MAGIC) {
e_printf("magic error:%x\n", data_all->magic);
goto lab_err;
}
if (data_all->version > DEVICE_DATA_VERSION) {
e_printf("versoin missmatch:%x\n", data_all->version);
goto lab_err;
}
memcpy_s(data, len, data_all->data, data_all->data_len);
free(data_all);
return true;
lab_err:
free(data_all);
return false;
}
// 写入数据到指定地址
static bool write_device_data_to_addr(uint32_t addr, uint8_t* data, uint32_t len)
{
int ret = hfuflash_erase_page(addr, 1);
if (ret != HF_SUCCESS) {
e_printf("擦除地址0x%x的Flash页失败错误码%d\r\n", addr, ret);
return false;
}
uint32_t total_size = sizeof(device_data_t) + len;
device_data_t *data_all = malloc(total_size);
if (data_all == NULL) {
e_printf("内存分配失败\r\n");
return false;
}
memset(data_all, 0, total_size);
memcpy_s(data_all->data, len, data, len);
data_all->checksum = calculate_checksum(data_all->data, data_all->data_len);
data_all->magic = DEVICE_DATA_MAGIC;
data_all->version = DEVICE_DATA_VERSION;
ret = hfuflash_write(addr, (char*)data_all, total_size);
if (ret != total_size) {
e_printf("写入数据到地址0x%x失败实际写入长度%d\r\n", addr, ret);
free(data_all);
return false;
}
free(data_all);
return true;
}
// 从 Flash 加载设备状态
int load_device_state(void) {
int ret = 0;
device_state_t state;
bool valid = false;
// 尝试读取主数据区
valid = read_device_data_from_addr(DEVICE_DATA_FLASH_ADDR, (uint8_t*)&state, sizeof(state));
// 如果主数据区无效,尝试读取备份区
if (!valid) {
valid = read_device_data_from_addr(DEVICE_DATA_BACKUP_ADDR, (uint8_t*)&state, sizeof(state));
}
// 两个存储区都失败,使用默认状态
if (!valid) {
e_printf("[STORAGE] 存储区数据损坏,使用默认状态\r\n");
reset_device_state();
save_device_state();
return 0;
}
// 更新设备控制状态
e_printf("设备状态恢复:\r\n");
e_printf("首次启动: %d => %d\r\n", g_device_state.is_first_boot, state.is_first_boot);
e_printf("配网状态: %d => %d\r\n", g_device_state.is_bound, state.is_bound);
e_printf("总开关: %d => %d\r\n", g_device_state.master_switch, state.master_switch);
e_printf("面板背光: %d => %d\r\n", g_device_state.panel_led, state.panel_led);
e_printf("工作模式: %d => %d\r\n", g_device_state.mode, state.mode);
for (int i = 0; i < SWITCH_COUNT; i++) {
e_printf("开关%d: %d => %d\r\n", i + 1, g_device_state.switches[i].switch_on, state.switches[i].switch_on);
e_printf("LED%d: %d => %d\r\n", i + 1, g_device_state.switches[i].led_state, state.switches[i].led_state);
e_printf("物理按键%d: %d => %d\r\n", i + 1, g_device_state.switches[i].physical_key, state.switches[i].physical_key);
}
memcpy(&g_device_state, &state, sizeof(device_state_t));
return 0;
}
// 保存设备状态到 Flash
int save_device_state(void) {
int ret = 0;
device_state_t state;
bool valid = false;
// 准备数据
memcpy(&state, &g_device_state, sizeof(device_state_t));
// 保存到主存储区
ret = write_device_data_to_addr(DEVICE_DATA_FLASH_ADDR, (uint8_t*)&state, sizeof(state));
if (ret != HF_SUCCESS) {
e_printf("[STORAGE] 写入主存储区失败: %d\r\n", ret);
return ret;
}
// 保存到备份区
ret = write_device_data_to_addr(DEVICE_DATA_BACKUP_ADDR, (uint8_t*)&state, sizeof(state));
if (ret != HF_SUCCESS) {
e_printf("[STORAGE] 写入备份区失败: %d\r\n", ret);
}
e_printf("[STORAGE] 设备状态保存完成\r\n");
return HF_SUCCESS;
}
// 重置设备状态为默认值
void reset_device_state(void) {
memset(&g_device_state, 0, sizeof(device_data_t));
// 设置默认状态
g_device_state.master_switch = false; // 总开关关闭
g_device_state.panel_led = true; // 面板背光开启
g_device_state.is_bound = false; // 设备未绑定
g_device_state.is_first_boot = true; // 标记为首次启动
g_device_state.mode = MODE_NORMAL; // 正常模式
// 所有开关默认关闭所有LED默认黄灯
for (int i = 0; i < SWITCH_COUNT; i++) {
g_device_state.switches[i].switch_on = false; // 开关关闭
g_device_state.switches[i].led_state = false; // LED黄灯
g_device_state.switches[i].physical_key = true; // 按键松开
}
e_printf("[STATE] 设备状态已重置为默认值\r\n");
}
//====================== GPIO配置数据结构 ======================
typedef struct {
pin_t pin;
gpio_direction_t direction;
const char* name;
} gpio_config_t;
// GPIO初始化配置表
static const gpio_config_t gpio_configs[] = {
// LED指示灯 - 输出
{LED1_GPIO, GPIO_DIRECTION_OUTPUT, "LED1"},
{LED2_GPIO, GPIO_DIRECTION_OUTPUT, "LED2"},
{LED3_GPIO, GPIO_DIRECTION_OUTPUT, "LED3"},
{LED4_GPIO, GPIO_DIRECTION_OUTPUT, "LED4"},
// 开关控制 - 输出
{SWITCH1_GPIO, GPIO_DIRECTION_OUTPUT, "SWITCH1"},
{SWITCH2_GPIO, GPIO_DIRECTION_OUTPUT, "SWITCH2"},
{SWITCH3_GPIO, GPIO_DIRECTION_OUTPUT, "SWITCH3"},
{SWITCH4_GPIO, GPIO_DIRECTION_OUTPUT, "SWITCH4"},
// 物理按键 - 输入
{KEY1_GPIO, GPIO_DIRECTION_INPUT, "KEY1"},
{KEY2_GPIO, GPIO_DIRECTION_INPUT, "KEY2"},
{KEY3_GPIO, GPIO_DIRECTION_INPUT, "KEY3"},
{KEY4_GPIO, GPIO_DIRECTION_INPUT, "KEY4"},
// 面板背光 - 输出
{PANEL_LED_GPIO, GPIO_DIRECTION_OUTPUT, "PANEL_LED"}
};
#define GPIO_CONFIG_COUNT (sizeof(gpio_configs) / sizeof(gpio_config_t))
//====================== 硬件控制函数 ======================
// GPIO 初始化
int switch_panel_gpio_init(void) {
int ret = HF_SUCCESS;
// 初始化pinctrl和GPIO
uapi_pin_init();
// uapi_gpio_init();
// 使用循环配置所有GPIO
for (int i = 0; i < GPIO_CONFIG_COUNT; i++) {
const gpio_config_t* config = &gpio_configs[i];
// 设置为GPIO模式
ret = uapi_pin_set_mode(config->pin, PIN_MODE_0);
if (ret != HF_SUCCESS) {
e_printf("[GPIO] %s pinctrl初始化失败: %d\r\n", config->name, ret);
return ret;
}
// 设置GPIO方向
ret = uapi_gpio_set_dir(config->pin, config->direction);
if (ret != HF_SUCCESS) {
e_printf("[GPIO] %s 设置方向失败: %d\r\n", config->name, ret);
return ret;
}
e_printf("[GPIO] %s 初始化完成 (方向: %s)\r\n",
config->name,
config->direction == GPIO_DIRECTION_OUTPUT ? "输出" : "输入");
}
e_printf("[GPIO] 所有GPIO初始化完成 (共%d个)\r\n", GPIO_CONFIG_COUNT);
return HF_SUCCESS;
}
// 设置开关输出状态
void set_switch_output(int switch_id, bool state) {
if (switch_id < 0 || switch_id >= SWITCH_COUNT) {
e_printf("[HW] 无效的开关ID: %d\r\n", switch_id);
return;
}
pin_t gpio_pin;
switch (switch_id) {
case 0: gpio_pin = SWITCH1_GPIO; break; // SWITCH1
case 1: gpio_pin = SWITCH2_GPIO; break; // SWITCH2
case 2: gpio_pin = SWITCH3_GPIO; break; // SWITCH3
case 3: gpio_pin = SWITCH4_GPIO; break; // SWITCH4
default: return;
}
// 设置输出状态
gpio_level_t level = state ? GPIO_LEVEL_HIGH : GPIO_LEVEL_LOW;
uapi_gpio_set_val(gpio_pin, level);
e_printf("[HW] 开关%d 状态: %s\r\n", switch_id + 1, state ? "" : "");
}
// 设置 LED 指示灯状态
void set_led_output(int led_id, led_state_t state) {
if (led_id < 0 || led_id >= SWITCH_COUNT) {
e_printf("[HW] 无效的LED ID: %d\r\n", led_id);
return;
}
pin_t gpio_pin;
switch (led_id) {
case 0: gpio_pin = LED1_GPIO; break; // LED1
case 1: gpio_pin = LED2_GPIO; break; // LED2
case 2: gpio_pin = LED3_GPIO; break; // LED3
case 3: gpio_pin = LED4_GPIO; break; // LED4
default: return;
}
// 设置LED状态 (高电平=白灯, 低电平=黄灯)
gpio_level_t level = (state == LED_WHITE) ? GPIO_LEVEL_HIGH : GPIO_LEVEL_LOW;
uapi_gpio_set_val(gpio_pin, level);
}
// 设置面板背光状态
void set_panel_led(panel_led_state_t state) {
// 设置面板背光状态 (高电平=亮黄灯, 低电平=灭灯)
gpio_level_t level = (state == PANEL_LED_ON) ? GPIO_LEVEL_HIGH : GPIO_LEVEL_LOW;
uapi_gpio_set_val(PANEL_LED_GPIO, level);
}
// 获取按键输入状态
bool get_key_input(int key_id) {
if (key_id < 0 || key_id >= SWITCH_COUNT) {
return true; // 默认松开状态
}
pin_t gpio_pin;
switch (key_id) {
case 0: gpio_pin = KEY1_GPIO; break; // KEY1
case 1: gpio_pin = KEY2_GPIO; break; // KEY2
case 2: gpio_pin = KEY3_GPIO; break; // KEY3
case 3: gpio_pin = KEY4_GPIO; break; // KEY4
default: return true;
}
// 获取输入状态 (低电平=按下, 高电平=松开)
gpio_level_t level = uapi_gpio_get_val(gpio_pin);
return (level == GPIO_LEVEL_HIGH);
}
//====================== 设备状态同步函数 ======================
// 同步硬件状态与软件状态
void sync_hardware_state(void) {
// 同步所有开关状态
for (int i = 0; i < SWITCH_COUNT; i++) {
set_switch_output(i, g_device_state.switches[i].switch_on);
set_led_output(i, g_device_state.switches[i].led_state ? LED_WHITE : LED_YELLOW);
}
// 同步面板背光状态
set_panel_led(g_device_state.panel_led ? PANEL_LED_ON : PANEL_LED_OFF);
e_printf("[STATE] 硬件状态已同步\r\n");
}
//====================== 主程序函数 ======================
int switch_panel_main(void) {
int ret = HF_SUCCESS;
if (g_initialized) {
e_printf("[MAIN] 开关面板已初始化\r\n");
return HF_SUCCESS;
}
g_initialized = true;
e_printf("[MAIN] 开始初始化SORONTEK智能面板...\r\n");
// 初始化GPIO
ret = switch_panel_gpio_init();
if (ret != HF_SUCCESS) {
e_printf("[MAIN] GPIO初始化失败: %d\r\n", ret);
return ret;
}
// 加载设备状态
ret = load_device_state();
if (ret != HF_SUCCESS) {
e_printf("[MAIN] 加载设备状态失败: %d\r\n", ret);
return ret;
}
// 检查是否首次启动,如果是则标记为非首次
bool first_boot = g_device_state.is_first_boot;
if (g_device_state.is_first_boot) {
g_device_state.is_first_boot = false; // 标记为非首次启动
e_printf("[MAIN] 检测到首次启动\r\n");
}
// 同步硬件状态
sync_hardware_state();
// 保存状态更新
save_device_state();
// 配网逻辑:
// 1. 如果设备未绑定 且 是第一次启动 -> 直接进入配网
// 2. 如果设备未绑定 且 不是第一次启动 -> 等待按键触发配网
if (!g_device_state.is_bound) {
if (first_boot) {
e_printf("[MAIN] 首次启动且未绑定,直接进入配网模式\r\n");
enter_config_mode();
} else {
e_printf("[MAIN] 设备未绑定,等待按键触发配网\r\n");
// 配网逻辑将在按键处理函数中实现
}
} else {
e_printf("[MAIN] 设备已绑定,正常运行\r\n");
}
e_printf("[MAIN] SORONTEK智能面板初始化完成\r\n");
print_device_state();
return HF_SUCCESS;
}
//====================== 调试函数 ======================
void print_device_state(void) {
e_printf("\r\n===== 设备状态信息 =====\r\n");
e_printf("总开关: %s\r\n", g_device_state.master_switch ? "" : "");
e_printf("面板背光: %s\r\n", g_device_state.panel_led ? "" : "");
e_printf("绑定状态: %s\r\n", g_device_state.is_bound ? "已绑定" : "未绑定");
e_printf("首次启动: %s\r\n", g_device_state.is_first_boot ? "" : "");
e_printf("工作模式: %s\r\n", get_mode_string(g_device_state.mode));
for (int i = 0; i < SWITCH_COUNT; i++) {
e_printf("开关%d: %s, LED: %s\r\n",
i + 1,
g_device_state.switches[i].switch_on ? "" : "",
g_device_state.switches[i].led_state ? "白灯" : "黄灯");
}
e_printf("=======================\r\n\r\n");
}
const char* get_mode_string(system_mode_t mode) {
switch (mode) {
case MODE_NORMAL: return "正常模式";
case MODE_CONFIG: return "配网模式";
case MODE_FACTORY_TEST: return "产测模式";
case MODE_UNBIND: return "解绑模式";
default: return "未知模式";
}
}