1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Autumn Sloan edited this page 2025-02-15 07:34:49 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled variations varying from 1.5 to 70 billion specifications to develop, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled versions of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes support finding out to enhance reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. An essential identifying feature is its reinforcement learning (RL) action, which was utilized to improve the design's responses beyond the standard pre-training and wiki.snooze-hotelsoftware.de fine-tuning process. By including RL, DeepSeek-R1 can adapt better to user feedback and objectives, ultimately enhancing both relevance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, meaning it's equipped to break down complicated questions and reason through them in a detailed way. This assisted reasoning procedure enables the model to produce more precise, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT abilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has recorded the industry's attention as a versatile text-generation model that can be incorporated into various workflows such as agents, rational reasoning and information analysis jobs.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture enables activation of 37 billion specifications, making it possible for efficient reasoning by routing queries to the most appropriate specialist "clusters." This the model to focus on various problem domains while maintaining overall effectiveness. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 design to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, systemcheck-wiki.de and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective designs to simulate the behavior and thinking patterns of the larger DeepSeek-R1 model, using it as a teacher design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this model with guardrails in place. In this blog site, forum.altaycoins.com we will use Amazon Bedrock Guardrails to introduce safeguards, avoid damaging material, and evaluate designs against key security requirements. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to various use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limit boost, create a limitation increase demand and connect to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For guidelines, see Set up permissions to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, avoid harmful material, and evaluate models against crucial security requirements. You can implement precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and model reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general circulation includes the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following areas show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and choose the DeepSeek-R1 design.

The model detail page offers necessary details about the model's capabilities, rates structure, and application guidelines. You can discover detailed usage guidelines, consisting of sample API calls and code snippets for combination. The model supports various text generation jobs, consisting of content development, code generation, and concern answering, utilizing its reinforcement learning optimization and CoT thinking abilities. The page also consists of release choices and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, choose Deploy.

You will be triggered to configure the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of instances, enter a number of instances (between 1-100). 6. For Instance type, select your instance type. For larsaluarna.se optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can set up sophisticated security and facilities settings, consisting of virtual private cloud (VPC) networking, service role permissions, and encryption settings. For the majority of use cases, the default settings will work well. However, for production deployments, you might desire to examine these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to begin utilizing the model.

When the implementation is total, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock play area. 8. Choose Open in play ground to access an interactive interface where you can experiment with different triggers and change model parameters like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal results. For instance, content for inference.

This is an excellent method to check out the model's thinking and text generation capabilities before incorporating it into your applications. The play area supplies immediate feedback, helping you understand how the model responds to numerous inputs and letting you fine-tune your prompts for optimum outcomes.

You can quickly evaluate the model in the play ground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference using guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to perform inference utilizing a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime client, configures inference criteria, and sends a demand to produce text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pediascape.science pre-trained models to your usage case, with your data, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses two convenient methods: using the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both methods to help you pick the technique that finest matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model internet browser displays available designs, with details like the provider name and model abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card. Each design card shows key details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if applicable), showing that this design can be registered with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to see the model details page.

    The design details page includes the following details:

    - The design name and service provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you deploy the design, it's suggested to examine the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to continue with release.

    7. For Endpoint name, utilize the automatically generated name or create a custom-made one.
  1. For trademarketclassifieds.com Instance type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the variety of instances (default: 1). Selecting suitable instance types and counts is essential for cost and efficiency optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this model, we highly suggest adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the design.

    The implementation procedure can take numerous minutes to complete.

    When release is complete, your endpoint status will change to InService. At this point, the design is all set to accept reasoning demands through the endpoint. You can keep an eye on the deployment progress on the SageMaker console Endpoints page, setiathome.berkeley.edu which will display appropriate metrics and status details. When the implementation is complete, you can invoke the model using a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the design is provided in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as revealed in the following code:

    Tidy up

    To avoid undesirable charges, finish the steps in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design utilizing Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace implementations.
  5. In the Managed deployments section, locate the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the correct deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build innovative options utilizing AWS services and sped up compute. Currently, he is focused on developing techniques for fine-tuning and enhancing the reasoning performance of big language models. In his spare time, Vivek takes pleasure in treking, enjoying motion pictures, and trying different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about building solutions that help clients accelerate their AI journey and unlock business value.